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FORWARD

The attainable service life of a turbine blade is very sensitive to the amplitude of vibratory
stress which, under resonant conditions, is inversely proportional to the amount of
damping in the system. Inherent damping in turbine-bladed disk assemblies is relatively
small. Therefore, the introduction of effective damping is instrumental in reducing
alternating stress and extending blade life.

The most commonly-used technique to increase the damping in turbine blades is to provide
for vibrational energy dissipation, through the use of friction interfaces between adjacent
blades. Many different damping configurations, based on this concept, have been used in
the past; the designs of which were largely based on empirical data and on experience with
previous applications. There have been several published attempts to analytically evaluate
these designs. For the most part, they consist of simple studies, aimed at understanding
the damping phenomenon, and do not provide useful design tools. Therefore, the
objectives of this program are to develop and to experimentally validate the analytical tools
necessary for the evaluation of friction dampers on a detail design level. Secondly, it is
hoped that the extensive experimental database generated in this program can be used by
future code developers to improve upon the analytical work presented herein and by
designers to help in the preliminary sizing of friction dampers for turbine blade
applications.
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ABSTRACT

The Airfoil Vibration Damper program has consisted of an analysis phase and a testing
phase. During the analysis phase, a state-of-the-art computer code was developed, which
can be used to guide designers in the placement and sizing of friction dampers. The use of
this computer code was demonstrated by performing representative analyses on turbine
blades from the High Pressure Oxidizer Turbopump (HPOTP) and High Pressure Fuel
Turbopump (HPFTP) of the Space Shuttle Main Engine (SSME). The testing phase of the
program consisted of performing friction damping tests on two different cantilever beams.
Data from these tests provided an empirical check on the accuracy of the computer code
developed in the analysis phase.

Results of the analysis and testing showed that the computer code can accurately predict the
performance of friction dampers. In addition, a valuable set of friction damping data was
generated, which can be used to aid in the design of friction dampers, as well as provide
benchmark test cases for future code developers.
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1.0 INTRODUCTION AND SUMMARY

Turbine blades are subjected to severe loading conditions during normal operation,
consisting of a combination of thermal, centrifugal, power bending, and oscillatory forces.
The oscillatory forces are caused by disturbances in the hot-gas flow due to upstream and
downstream obstructions, which generally occur at some multiple of pump speed. Dynamic
excitation of the turbine blade occurs, as it passes through these flow disturbances during
rotation of the disk. Although it is desirable to design turbine blades to avoid coincidence of
natural frequencies and flow stream excitation frequencies, aerodynamic constraints
imposed on the blade airfoil make it nearly impossible to design a completely resonant-free
blade. Natural frequencies exist in almost all blade applications on the SSME. These
natural frequencies are in close proximity to excitation frequencies in the hot-gas stream.
Therefore, the turbine blade designer is forced to rely on additional damping to improve
turbine blade fatigue life. Usually this takes the form of friction dampers, consisting of
small, centrifugally-loaded, metal plates. These plates connect each blade to the two
adjacent blades and provide damping, as vibration occurs, by frictional scrubbing.

Historically, friction dampers have been designed using empirical data obtained from spin
rig and engine testing. Analytical methods of determining friction damper performance have
been developed, but these have proven to be either too expensive (transient time-history
methods) or too simplistic (single-mode, steady-state harmonic balance methods) for
practical use. Therefore, the computer code BLDAMP was developed to economically
predict turbine blade friction damper performance. The code is not limited by the size of the
finite-element representation of the blade. It includes the effects of as many as eight modes
of vibration, as well as allowing input of any arbitrary forcing function.

In addition to the analytical task described above, laboratory testing was completed to
determine the effectiveness of friction damping in the reduction of vibratory stresses in a
cantilever beam. This testing was done to provide a good empirical database with which to
validate the computer code and also to serve as a benchmark for future code developers and
damper designers. The tests were performed using two different sized beams; one with a
low natural frequency and one with a high natural frequency. Two different dampers of the
same geometry, but different materials, were tested on each of the beams to determine their
influence on beam response. Results showed that friction damping can be extremely
effective in reducing the response levels of vibrating structures. Friction damping was
found to provide the greatest reduction in dynamic response when the damper was located
near the tip of the beam and also when the normal load was above a critical value.

The friction damping test results were compared with analytical predictions made using the
computer program BLDAMP, which was developed in an earlier phase of this program.
The comparison showed good agreement between test and analysis results. However, the
analytical predictions were highly dependent on friction coefficient. Since friction
coefficients were not readily available for the materials used in the test program, this
parameter was used to tune the analytical results to match test data.
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2.0 TECHNICAL DISCUSSION
2.1 BLDAMP COMPUTER CODE

2.1 mmar

The computer code BLDAMP, developed by Griffin Consulting for the task of predicting
the performance of friction dampers, was installed on the Rocketdyne CDC computer
system. It was thoroughly exercised, using the High-pressure Fuel Turbopump (HPFTP)
first-stage turbine blade of the Space Shuttle Main Engine (SSME) as a sample case.
Several modifications were made to improve ease of use and output format, as part of the
code implementation. The new user manual, as well as a complete listing of the modified
code, is included in this report.

Computer predictions for the performance of the HPFTP first-stage turbine blade dampers
are included as a sample exercise to demonstrate the various options of BLDAMP. The
results presented herein should not be used for design purposes, as the forcing functions
used in the analysis were rough assumptions, which were not based on engine
measurements or hydrodynamic analysis of the flow field surrounding the blades.

2.1.2 Code Description and Use, BLDAMRP is a special purpose computer code
developed by Griffin Consulting. It analytically predicts the performance of turbine blade
friction dampers. The theoretical development of the method used by the code is reproduced
from portions of Reference 1 and is included as an appendix (Section 6.1) of this report.

Input to the code consists of modal parameters, which describe the dynamic characteristics
of a turbine blade. These parameters are derived either from an analytical representation of
the blade or from a modal test. Damper stiffness properties and friction data are also input
as problem parameters. A complete description of all the required input data for running
BLDAMP, as well as a listing of the code, is provided in Section 6.2 of the Appendix.

The code is capable of performing three different types of computer analyses. Each analysis
type is described briefly below. Sample cases are also presented to illustrate the option.
The sample cases were provided by the code developer and were subsequently rerun with
identical results, using the Rocketdyne version of the code.

r n Anal . This option computes the peak
response of a fnctxon damper, duetoa smus01dal forcmg function over a frequency range of
interest for a given normal load. The response is printed in a table of amplitude (stress or
displacement) versus frequency. A sample plot of the output data from the program is
presented in Figure 2.1-1 for a two degree of freedom oscillator. It is important to
understand that the damper normal load, for which the curve of Figure 2.1-1 is calculated, is
actually half of the centrifugal load for a single damper. This distinction is made because,
for each damper, half of the load is supported by each blade. The program still considers
two dampers attached to the blade. However, both the input and output data refer to a

‘normal force which is only half of the centrifugal load of one damper.

The optimum normal force
analysis option computes the resonant response of a blade under sinusoidal loading at
various damper normal force values. Printed output consists of a table of peak response
versus normal force. Thus, an optimum damper normal force can be obtained using this
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option. An optimum normal force plot is shown in Figure 2.1-2 for the two degree of
freedom oscillator. Again, note that the normal force values given in the curve are equal to
one-half of the centrifugal load due to a single damper.

2. r_Performan Analysi The damper performance
analysis option determines the response of a frictionally-damped turbine blade, as a function
of the response of the same blade with no friction damper. It is easy to determine the
improvement gained by the addition of friction dampers from information of this type. A
damper performance curve for a two degree of freedom oscillator is presented in Figure
2.1-3. It clearly shows the effectiveness of friction damping.

2.1.3 HPFTP Damper Optimization. An SSME blade was used as a test case to

exercise the code and to gain experience with systems having the same dynamic
characteristics as actual rocket engine turbine blades. The blade chosen for analysis was the
HPFTP first-stage turbine blade (P/N R0019821). Modal results from an existing finite-
element model of the blade were available for use. The only unavailable information was
the modal stress distribution, which was not calculated during the initial analysis. In lieu of
rerunning the original analysis to obtain modal stresses, it was determined that blade tip
displacement would be an adequate measure of blade response to be used in the calculations.
Normally, an equivalent alternating stress at some critical location is used as a tracking
parameter and indicator of the level of response. At a later date, modal stress information
became available. The displacement-based optimization curves were used, in conjunction
with this new information, to obtain rough estimates of the optimum damper normal force
for the HPFTP turbine blade.

Geometry plots of the blade model used in the analysis are shown in Figure 2.1-4.
Boundary conditions consisted of restraining the model along two rows of nodes at the
shank root, while material properties used in the analysis reflect those at SSME operational
temperature. Comparison with blade-in-block holographic modal test results shows an
average error of only 6.3 percent for the first 6 modes. Centrifugal stiffening effects were
not included in the analysis. Modal information was derived from the model and was used
as input to BLDAMP. A Campbell diagram based on the computer-generated results from
the model is presented in Figure 2.1-5. This Campbell diagram should not be used for
design purposes. The official Campbell diagram for the HPFTP first-stage blade is based
on spin test results. It correctly includes the effects of centrifugal stiffening and disk/fir tree
interface flexibility. The analysis presented herein does not attempt to address these issues,
but is intended to serve only as an illustrative example on the use and capabilities of the
computer program BLDAMP.

The frequency response option of BLDAMP was exercised by forcing the blade second
mode with a 13N sinusoidal forcing function. Frequencies ranged from approximately
6,000 to 12,000 Hz. The forcing function was chosen such that the generalized force for
the second mode was of such a magnitude as to cause a unit displacement of the blade tip on
an undamped blade being forced at resonance. All other generalized forces were chosen to
be zero. Note that undamped refers to no friction damping, in the context of this report. A
viscous damping ratio of 0.01 was used in all cases, both with and without friction damping
present. Figure 2.1-6 presents a comparison of the frequency response plots for the
undamped- and frictionally-damped blades. The resonant response of the blade second
mode, which occurs at approximately 10,100 Hz, is clearly shown in the figure. The
frequency shifts to a higher value with the addition of friction damping to the system. This
expected result is opposite to the effect of viscous damping, which reduces the resonant
frequency as damping is increased.
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The optimum normal force option of the code was exercised to a greater extent than any
other option, during the study of the HPFTP blade. Four different resonant points were
investigated. They are shown by the circled areas on the Campbell diagram of Figure 2.1-5.
Recall from previous discussion that these points do not represent actual engine interference
points, because the blade model reflects the root-fixed condition. During this phase of the
study, the damper stiffness and coefficient of friction were varied to determine the effect on
optimum normal load. Results are presented in Figures 2.1-7 through 2.1-10. They reveal
the classic damper curve, clearly showing the desired optimum damper normal force. These
figures are normalized, such that the response of the blade tip is 1.0 inches under a no-
damper configuration. Scaling to another displacement and normal load can be done in a
linear fashion. For example, consider the second blade mode being excited by 13N.
Consulting Figure 2.1-7 at a damper stiffness of 500,000 1b/in and an undamped tip
displacement of 0.001 inches, the optimum 1/2 normal load for this mode is approximately
13 pounds, which gives an optimum total damper load of 26 pounds. For comparison, the
current HPFTP damper normal force is shown in Figure 2.1-11, as a function of pump
speed. Itis 210 pounds at 36,000 rpm. However, this does not imply that the current
damper is too heavy, because of the initial assumption on the magnitude of the forcing
function. If an undamped tip deflection twice as large had been assumed, then the optimum
normal force would also be doubled. It is also apparent from Figures 2.1-7 through 2.1-10
that the optimum normal force varies, depending on the mode which is being damped.

Another set of curves can be generated, from the families shown in Figures 2.1-7 through
2.1-10, by considering only the optimum points and by choosing damper stiffness as the
independent variable. These are shown in Figures 2.1-12 through 2.1-15. Here, the
generalized force is scaled such that it drives the undamped blade to a peak tip deflection of
0.001 inches at resonance. These curves are highly dependent on the value of force used.
For example, if the driving force magnitude is great enough to cause a tip displacement of
0.002 inches in an undamped blade, then the optimum damper loads shown in the figures
will double. Therefore, it is clear that, when using the optimum damper force approach, the
forcing function magnitude must be known to a relatively high degree of accuracy to obtain
meaningful results.

As mentioned previously, modal stresses for the blade became available after the curves of
Figures 2.1-7 through 2.1-15 were generated. The maximum alternating stress was then
determined from the modal stress information for each of the first six modes, assuming a tip
deflection of 0.001 inches. The results for each of the four interference points were then
scaled to an undamped stress level of 15,000 psi, which was assumed to be representative
of an undamped turbine blade stress level. The results of this scaling are presented in
Figures 2.1-16 through 2.1-19, which represent the best estimate of the optimum damper
weight for the HPFTP first-stage blade.

The damper performance curve option of the code was used on a limited basis during this
study. Results of several cases, ran for the second mode under 13N excitation, are
presented in Figure 2.1-20. They show the relative merits of the frictionally-damped blade,
as compared to the undamped blade.

mmen n_th f BLDAMP. The computer code BLDAMP
represents a significant improvement in capability over previous methods of analyzing
friction dampers. An estimate of the optimum friction damper size, for a given blade
design, can be made in a very short period of time, using this code. However, the code is
not without its problems. BLDAMP is very sensitive to the input data for the analysis.
Small input changes can make the difference in obtaining a correct or incorrect answer.
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In particular BLDAMP fails to converge to a solution at higher values of damper stiffness.
As an example, the damper stiffness for the HPFTP blade has been calculated to be
1,000,000 Ib/in. Yet, the program will not converge at stiffnesses larger than 200,000 1b/in
for the fourth mode (See Figures 2.1-9 and 2.1-14). In other cases, the program will
converge to an answer that is obviously incorrect. This can be observed from Figure 2.1-
10, where the k = 500,000 1b/in case does not give reasonable results. Although BLDAMP
is a great improvement over previous methods of damper analysis, additional work is
needed to improve the convergence properties of the program.

Other problems, which were discovered when using BLDAMP during this study, are listed
below.

1. The analysis does not converge at intermediate values of damper stiffness and
then does converge at higher stiffnesses.

2. Sometimes the program prints too few points to define the normal force curve.
It needs user control of the normal force spacing.

3. The analysis does not converge for low values of input force. Problems are
anticipated when using realistic forcing functions.

2.1.5 Conclusions. The computer code BLDAMP has been modified and installed on
the Rocketdyne CDC computer system. Sample cases have been run, which exactly match
those provided by the code developer, Griffin Consulting. In addition, more realistic cases
have been run, using the HPFTP first-stage turbine blade as a test case. Results of the
study show that the program is easy to use and provides answers which appear to be
reasonable. Based on an assumed forcing function, which gives an alternating stress of
15,000 psi on an undamped blade, the optimum damper weight was calculated to be
approximately 140, 10, 25, and 100 lbs for modes 2, 3, 4, and 6, respectively. All of these
values are less than the current 210 1b damper weight. However, these damper weights are
to be used only for illustrative purposes, because the forcing function used for the analysis
is not accurate.
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2.2 FRICTION DAMPING TEST RESULTS
2.2.1 Initial Testing

2:2.1.1 Summary. A laboratory test was completed to determine the
effectiveness of friction damping in the reduction of vibratory stresses in a cantilever beam.
The test was performed using two different sized beams; one with a low natural frequency
and one with a high natural frequency. Two different dampers of the same geometry, but
different materials, were tested on each of the beams to determine their influence on beam
response. Results showed that friction damping can be extremely effective in reducing the
response levels of vibrating structures. Friction damping was found to provide the greatest
reduction in dynamic response when the damper was located near the tip of the beam and
also when the normal load was above a critical value.

2.2.1.2 Test Objectives. The objectives of the vibration test were to measure
the performance of friction dampers and to quantify certain parameters that were found to be

important. These parameters are friction coefficient, damper stiffness, damper location, and
beam driving force. The test was also intended to serve as a database for comparison with
analytical results, obtained using the BLDAMP computer code.

2.2.1.3 Test Hardware and Setup. The test was repeated on two entirely
different cantilever beams; one which was designed to operate at relatively low frequencies,
ranging from 300 Hz to 500 Hz, and another which was designed for the 2,000-3,000 Hz
frequency range. The low-frequency test beam (long beam) shown in Figure 2.2-1, had a
measured first natural frequency of 344 Hz and a second natural frequency of 1,790 Hz,
with no dampers installed. The large natural frequency spacing ensured no coupling
between modes. The high-frequency test beam (short beam), shown in Figure 2.2-2, had
measured undamped natural frequencies of 2,556 Hz and 4,082 Hz.

During testing, the friction damper was installed in a selected position underneath one of the
tangs, which were machined as integral parts of each beam. Figure 2.2-3 shows a damper
as installed in one of the test beams and Figure 2.2-4 shows the dimensions of the damper,
of which several samples were constructed of both Haynes 188 and silicon nitride. Only
one of the two material types and only one damper were used on any single test run. The
choice of Haynes 188 was made because this has been used successfully at Rocketdyne as a
damper material on both the high-pressure oxidizer and high-pressure fuel turbopumps.
Silicon nitride was chosen as an experimental material for its low coefficient of friction, low
density, and high stiffness. These properties are all desirable in friction dampers, because
past experience has shown that heavy dampers, or dampers with high friction coefficients,
are subject to lockup. Also damper stiffness has been shown analytically to provide better
damper performance.

The dampers were designed to rest in a groove machined into the stationary part of the test
fixture (Figures 2.2-1 through 2.2-3). The knife-edge portion of the damper was designed
to fit tightly into the groove, thus precluding any damper motion relative to the base. This
design allows only sliding motion at the interface between the damper and the test beam.
The normal force was applied to the back side of the damper by means of a cable or string
arrangement, which acted through a damper holder. The damper holder, shown in Figure
2.2-5, was identical for low- and high-frequency beams. ‘It served to transfer the load from
the cable to the damper in a uniform fashion.
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The test setup consisted of a cantilevered beam bolted to a shaker table, as shown in Figures
2.2-6 and 2.2-7. The low-frequency beam was tested using a MB C-10 shaker in EDL
(Engineering Development Laboratory) Vibration Room 3. Later, a Ling A249 shaker in
Vibration Room 4 was used. The high-frequency beam was tested using a Wilcox Research
D125L-M shaker. As can be seen from the figures, the test setup had provisions for placing
a friction damper at any one of several locations along the span of the beam. Dampers were
loaded by means of a cable and load cell, or by a string and pulley arrangement, as shown in
Figures 2.2-8 and 2.2-9. The load cell was used primarily for the higher loads, while the
string and pulley were used for the lower loads. Loads were measured either by the load
cell or by a small spring scale. Application of the loads was accomplished by addition of
weights to a small bucket, or by tightening a bolt attached to the load cell.

2.2.1.4 Test Instrumentation. Each beam was instrumented with strain

gages and accelerometers, positioned as shown in Figures 2.2-10 and 2.2-11. All data
channels were recorded on magnetic tape during the test . A schematic of the instrumentation
and data-gathering system is shown in Figure 2.2-12.

Both high- and low-frequency beams were modal
tested to determine natural frequencies and mode shapes. Testing was accomplished with
the HP Modal Analyzer system, using the calibrated hammer method. Measurements were
taken with and without a damper installed, to determine the range of resonant frequencies to
expect when performing the actual damper sine-sweep testing. The data were also used to
determine the damper stiffness, as will be discussed later. When the damper was installed,
a large normal force was used to keep the damper from slipping during the test. This was
done to ensure that the test with the damper installed represented an upper bound to the
frequency which could occur. Table 2.2-1 presents a list of the modal frequencies found
from the test. Figures 2.2-13 through 2.2-17 show typical mode shapes and frequency
response functions of the beams, both with and without the damper installed. All mode
shapes, measured in the test, consisted of beam bending in the vertical plane.

2.1, iffness. Damper stiffness was determined by measuring
the natural frequency of the beam, both with and without the damper installed Then a finite-
element model of the beam was used to determine the additional stiffness necessary to cause
the observed frequency shift. The finite-element model was calibrated by comparing
analytical frequencies with measured frequencies, without the damper installed. The model
was modified until a satisfactory match was obtained. When the beam was tested with the
damper installed, a large normal force was used to ensure that the damper was completely
locked. This had the effect of placing a spring to ground at the damper position. The
stiffness of the damper spring was found by using the finite-element model to recompute the
natural frequencies of the beam, as a function of damper stiffness. Then the stiffness was
determined which gave the correct frequency, as measured in the test. This procedure was
repeated at each damper location. An average stiffness of 450,000 Ib/in resulted for the
Haynes 188 damper. The stiffness of the silicon nitride damper was determined from the
Haynes damper stiffness, by using the modulus ratio between the two materials. This
resulted in a stiffness for the silicon nitride damper of 675,000 Ib/in.

2.2.1.7 Damper Effectiveness Testing. Testing to determine the

effectiveness of friction dampers was accomplished by performing a sine sweep through the
frequency range of the first beam bending mode and recording the accelerometer and strain
gage responses. The tests were first performed without the damper installed and then with
the damper installed. The damper normal load was selected prior to the test. Then it was
held constant throughout the sine sweep. For the next sweep, a new value of damper
normal force was used. The test was then repeated at the same input level. Typical
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Table 2.2-1

BEAM NATURAL FREQUENCIES WITH AND WITHOUT DAMPERS INSTALLED
MODAL TEST RESULTS

LOW FREQUENCY BEAM

CONFIGURATION _ MODE 1 MODE 2
No Damper 344 Hz 1790 Hz
Haynes 188 Damper at Tang 1 405 Hz >2000 Hz
Haynes 188 Damper at Tang 3 712 Hz >2000 Hz
Haynes 188 Damper at Tang 5 ‘ 1288 Hz 1605 Hz (1)
Haynes 188 Damper at Tang 7 1416 Hz >2000 Hz

HIGH FREQUENCY BEAM

CONFIGURATION MODE 1 MODE 2
No Damper 2556 Hz 4082 Hz
Haynes 188 Damper at Tang 1 2633 Hz 4402 Hz
Haynes 188 Damper at Tang 2 4335 Hz 6052 Hz

Notes: (1) Tang 5 location was very close to the nodal point for the
low frequency beam 2nd bending mode.

(2) When dampers were installed a large normal force was applied
to lock the damper and prevent sliding during the modal
test. Testing was done using very light hammer raps to
excite the beans.

(3) All modes are beam bending modes.
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response plots are shown in Figures 2.2-18 through 2.2-27 for both damped and undamped
beams. The input was increased after testing was completed at a given excitation level, so
that the effects at higher vibration levels could be determined.

2.2.1.8 Test Results. Results of the testing were plotted in the form of stress
versus normal force curves for each damper position and type. These curves are presented
in Figures 2.2-28 through 2.2-37 for the low-frequency beam (long beam) and Figures 2.2-
38 through 2.2-44 for the high-frequency beam (short beam). The stress was determined
from strain gages located at the root of the beam for all the cases shown. The normal force,
presented in these curves, represents the total force applied to the damper by the cable. The
actual force, at the interface between the damper and vibrating beam, is half of the total
force. The curves show the classic friction damper behavior, which consists of a reduction
in vibratory response as normal force is increased up to a critical value. References 5 and 6
show a large increase in response at normal loads greater than the critical value. However,
in this test, a flat or slight increase in response was observed as normal force was increased.
This is due to the relatively high stiffness of the damper, which has the effect of flattening
the response curve.

Viscous damping ratios were computed for each beam, without dampers installed, using the
half power point method. Damping ratios were also computed at each of the two vibration
input levels used for the beams. These are shown in Table 2.2-2 and range from 0.005 to
0.006 for the low-frequency beam and from 0.008 to 0.015 for the high-frequency beam.

The major observation from the test data is that friction damping can be extremely effective
in reducing vibratory response. Tenfold reductions in response were commonly observed
during testing, as can be seen from the summary given in Table 2.2-3. In addition, it was
found that the effectiveness of the dampers increases, as the damper is moved to locations
closer to the tip of the beam. This expected result occurs because the beam motion is larger
at the tip and can be expected to dissipate more energy at that location. This can be seen
from a comparison of Figures 2.2-29 and 2.2-33, which show the response of the low-
frequency beam with dampers at tangs 1 and 3, respectively. Also, from these two figures,
it can be seen that the optimum normal force is significantly reduced, as the damper is
moved from tang 1 to tang 3, i.e., closer to the tip of the beam. Further testing with the
damper located outboard of tang 3 was attempted with mixed results. For these
configurations, the beam response was consistently low level. However, the data quality
and test-to-test repeatability were poor. It was found that, because of feedback caused by
the stick-slip motion of the damper, the shaker control system was unable to keep the base
moving in a sinusoidal fashion at the desired input level.

The character of the damper performance curve for the silicon nitride damper was found to
be somewhat different than for the Haynes 188 dampers, as can be seen by comparing
Figures 2.2-28 and 2.2-29 with Figures 2.2-30 and 2.2-31. From Figures 2.2-28 and 2.2-
30 it is clear that the silicon nitride damper requires a much larger normal load to reach the
optimum point than the Haynes 188 damper. This is indicative of a low friction coefficient,
which is expected for this material. On the other hand, Figures 2.2-29 and 2.2-31 show the
optimum normal force to be about equal for the two dampers. A closer evaluation of the
curve of Figure 2.2-31 leads one to believe that the last two data points are in error and that
the actual optimum point is much farther to the right than shown. This is supported by the
fact that at 2G input (Figure 2.2-30) the optimum normal force was found to be 250 1bs.
Therefore, at 5G input (Figure 2.2-31) the optimum must be greater than 250 1bs.

Testing on the low-frequency beam at the outboard damper locations and on the high-
frequency beam at all damper locations proved to be very difficult, because of damper
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Table 2.2-2

CRITICAL DAMPING RATIOS WITHOUT FRICTION DAMPERS INSTALLED

LOW_FREQUENCY BEAM

EXCITATION LEVEL DAMPING RATIO
2G .005
5G .006

HIGH FREQUENCY BEAM

EXCITATION LEVEL DAMPING RATIO
8G .015
12G .008
RI/RD 91-230



PEAK RESPONSES WITH AND WITHOUT DAMPERS

LOW FREQUENCY BEAM

INPUT

2G
5G
2G
5G
2G
5G
2G
5G
2G
2G

HIGH FREQUENCY BEAM

INPUT

8G
12G
8G
12G
8G
12G
12G

STRESS
(N=0)

11.7
23.2
11.9
23.2
11.7
23.2
11.9
23.2
11.7
11.7

ksi
ksi
ksi
ksi
ksi
ksi
ksi
ksi
ksi
ksi

STRESS
(N=0)

.

AN N
O WOoWOooo

ksi
ksi
ksi
ksi
ksi
ksi
ksi

Table 2.2-3

STRESS N
(N=Optimum)
1.2 ksi 70
3.8 ksi 120
1.4 ksi 250
7.4 ksi 1200
0.2 ksi 12
0.6 ksi 25
1.4 ksi 18
STRESS N
(N=Optimum)
0.2 ksi 60
0.8 ksi 50
0.9 ksi 75
0.7 ksi 50
0.5 ksi 50
0.6 ksi 45
0.6 ksi 35
RI/RD 91-230
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Figure 2.2-34 Low frequency beam optimum normal force curve
for 2G input and Silicon Nitride damper at tang 3
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Figure 2.2-37 Low freguency beam optimum normal force curve
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for 8G input and Silicon Nitride damper at tang 1




SHORT BEAM DAMPING TEST /ANALYSIS

12G INPUT — SILICON DAMPER AT TANG 1

STRESS (PSI)

0€C-16 I/MA {Thousands)
N
]

L

[ |
By =

m

'_H"—"'l—{ ; IE !

G ] I | T T T | ] T 1 I T
G 40 ag 12G 180 200 24G

NORMAL FORCE (Lbs)
O  TEST DATA +  BLDAMP PROGRAM u=05

Figure 2.2-41 High freaguencv beam opntimum normal force curve




STRESS (PSI)
(Thousands)

0£T-16 @I/MY

2.8
2.6
2.4

2.2

1.8
1.6
1.4

1.2

G.8
0.6
0.4

G.2

SHORT BEAM DAMPING TEST/ANALYSIS

8G INPUT — HAYNES 188 DAMPER AT TANG 2

a
t

¢ 2G 40 6C

NORMAL FORGE (Lbs)
O  TEST DATA +  BLDAMP PROGRAM u=05

Figure 2.2-42 High frequency beam optimum normal force curve
for 8G input and Haynes 188 damper at tang 2

8¢



STRESS (PSH)
(Thousands)

0€Z-16 QY/MA

SHORT BEAM DAMPING TEST /ANALYSIS

12G INPUT — HAYNES 188 DAMPER AT TANG 2

]

1]
1]

60

NORMAL FORCE (Lbs)
O  TEST DATA +  BLDAMP PROGRAM p=05

Figure 2.2-43 Hidh frequencyv heam omnf imiim merma T Forvom oot em

ac



Z buej e geduep 9PTIFTN UODITIS pue 3ndut HZT I03F
aAIno aonioj Tewaou wnurido wesaq Aousnbsal UbBTH ¥¥-T°C 2anbTd

go=r WvHO0ud dWvalg  + viva 1S3L 0O
(sq1) 30404 T¥YHUON

Ot 0c 0

| | 1 |

€ ONVL L¥ d3dWvQ NODITIS — LNdNI 92t

SISATVNV/LSHL IONIdAVO NWVIdd LAOHS

71

RI/RD 91-230

(spucsnoy )
(1ISd) SS3HLS



chatter and shaker control problems. As the damper transitioned from a locked state to a
slipping state, a loud noise emanated from the damper area and the shaker could no longer
be controlled. The damper would not remain centered in position and tended to drift off to
one side. It was also found that the output signals from the strain gages and accelerometers
were not sinusoidal during this period. The nonsinusoidal nature of the vibration is
significant, because the BLDAMP program assumes sinusoidal excitation.

The surface finish on the test beams was originally machined smooth. However, after a
short period of testing, rub marks were observed at the damper contact points. These rub
marks were very similar to the marks observed on the HPOTP blade platforms after time in
service. The contact surface for the Haynes 188 dampers, however, was worn in a much
different manner than dampers that have been hot-fire tested on actual blades. The damper
surface was extremely rough and pitted. A black powdery residue was observed on both
the beam and damper after testing. The residue is believed to be coming from the damper,
because most of the wear occurred there. The reason behind the abnormal wear patterns is
most likely because of the dynamic response of the damper itself. As will be discussed later
in this report, the damper was vibrating excessively during the period of time when the
beam was passing through resonance. The silicon nitride damper contact surface did not
show the wear that was present on the Haynes damper.

2:2.1.9 Problems. As can be seen from a comparison of the plots of Figures
2.2-23 and 2.2-25, the character of the vibration changed dramatically when friction
dampers were installed. The plots of these figures represent RMS data and do not show the
actual time histories of the signal. Although the time histories are not presented here, the
intent was to keep the input to the shaker as sinusoidal as possible, during the entire sweep
through the frequency range of interest. This proved quite difficult when friction dampers
were installed, particularly in the high-frequency beam and also in the low-frequency beam
at damper locations near the tip. During testing under these conditions, the beam response
was not sinusoidal and feedback into the shaker table distorted the input, to a large degree.
Since the analytical program BLDAMP assumes a constant magnitude sinusoidal input, it
was impossible to correlate the analysis results to the tests, during which damper chatter
occurred.

2.2.2 Follow-on Testing

2.2.2.1 Summary. Another test series was completed using the low-frequency
beam, due to the problems encountered with the initial testing, as described in Section
2.2.1. Testing was performed at lower input levels, using a different shaker and control
system, which helped prevent the nonsinusoidal oscillations observed with the previous
setup. This testing did not alter the basic conclusions regarding friction dampers; but the
quality of the test results was improved significantly. A large database was also acquired,
which will aid in the development of future analytical methods of damper design.
Furthermore, a set of design curves was generated, which will greatly aid in the selection of
the correct damper design parameters for a given blade configuration.

2.2.2.2 Test Description. Testing was performed in an identical manner to
that described in Section 2.2.1, with several exceptions. Most importantly, the input

vibration levels were reduced from the previous testing. This was done because excess
motion of the test beam at high vibration levels caused the damper to chatter. This behavior
is probably not indicative of actual turbine damper behavior, because turbine damper blade
motion is an order of magnitude smaller than what was used on the beam during the initial
testing. Also, very large centrifugal forces, on the order of 150,000 Gs, are present in
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typical turbines. These forces, which are impossible to duplicate in a nonrotating test setup,
should keep the damper from chattering by holding it tightly against the blade surface. The
second improvement to the test was the use of a LTV Model 275A vibration shaker, which
was rated at 10,000 Ib force. This shaker was coupled with an Unholtz Dickie SP-7 control
system, which helped to reduce feedback and kept the shaker motion as sinusoidal as
possible. .

Data was obtained by first placing the damper at one of seven locations on the test beam and
then slowly sweeping through the resonant point. Two series of tests were performed on
the beam for each of the seven damper locations; one at a shaker input level of 0.5G peak
and another at a level of 1.0G peak. The normal force on the damper was changed, after
each test run, to obtain curves of response, as a function of normal force. Testing
proceeded with both input levels and two damper types, until data were obtained at all seven
damper locations. Over 100 test runs were completed during the course of the testing.

2:2.2.3 Test Results. Curves of peak beam response at the resonant point, as
a function of damper normal load, are presented in Figures 2.2-45 through 2.2-72 for the
Haynes 188 damper and in Figures 2.2-73 through 2.2-100 for the silicon nitride damper.
Each of the curves shows the characteristic damper behavior. This behavior consists of an
initial drop in beam motion, until an optimum normal load is reached; at which point the
response flattens. Further increases in normal load fail to reduce the beam response and, in
some cases, may even increase the response slightly.

Friction damping was shown to be extremely effective in reducing vibratory response, as
was observed in the previous testing on this beam. Figures 2.2-101 through 2.2-106
summarize damper effectiveness, as a function of location on the beam. These data show
that reductions of over 95 percent can be achieved with proper placement. These curves
have been completely nondimensionalized, thereby providing a valuable design tool for
determining the best position for a damper. These plots show the damper should be located
at a blade span of at least 30 percent to be most effective. The results shown in these figures
are also consistent with previous work; in that the damper performs better as it is moved
toward the beam tip. Vibratory motion is larger toward the tip. Therefore, more energy
dissipation will occur with the damper at that location. However, the curves are relatively
flat, once the 30-40 percent span position is reached, which was an unexpected result from
testing. This is an indication that a damper placed at 40 percent span is nearly as good as a
tip damper. Tip dampers have been shown in spin testing to perform extremely well (see
Reference 1).

The normal force required to attain minimum response is presented in Figure 2.2-107 for the
first mode of the beam. This curve indicates that a lower value of force is needed, as the
damper is moved closer to the tip. Values plotted in this figure have also been
nondimensionalized, which will aid future designers in the selection of the optimum normal
force for their application. Proper use of this curve involves specification of the turbine
blade generalized force, which, in turn, requires knowledge of the flow field forcing
function and the blade mode shape. Blade mode shapes different from those of a cantilever
beam will invalidate the results. Nevertheless, the curve of Figure 2.2-107 yields a starting
point for selection of the optimum damper weight. Also worth noting is the close overlay of
the Haynes 188 and silicon nitride damper curves. This indicates the two damper materials
have roughly the same friction coefficient. Friction coefficients of materials different from
Haynes 188 or silicon nitride will result in different curves. However, most materials used
for dampers will probably have about the same friction coefficient, indicating that the curves
will still be useful.
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Figure 2.2-50 Low frequency beam optimization curve based on test data
Haynes 188 damper at tang 3, 0.5G input
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Figure 2.2-51 Low freguency beam optimization curve based on test data
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Figure 2.2-52 Low frequency beam optimization curve based on test data
Haynes 188 damper at tang 4, 0.5G input




88

0€T-16 @I/MA

Acceleration (G's peak)

150
140
130
120
110
100
90
80
70
60

50 |

40
30
20
10

Friction Damper Performance
Tang 5 Haynes 188 Damper 0.5G Input

| i | t | |

2 4 6 8 10

Normal Load
o Tip Accelerometer

Figure 2.2-53 Low frequency beam optimization curve based on test data.
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Figure 2.2-54 Low frequency beam optimization curve based on test data
Havnes 188 damper at tang 5, 0.5G input
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Figure 2.2-56 Low frequency beam optimization curve based on test data
Haynes 188 damper at tang 6, 0.5G input
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Figure 2.2-57 Low frequency beam optimization curve based on test data
Havnes 188 damper at tang 7, 0.5C input
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Low frequency beam optimization curve based on test data
Haynes 188 damper at tang 7, 0.5G input
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Figure 2.2-59 Low frequency beam optimization curve based on test data
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Figure 2.2-60 Low frequency beam optimization curve based on test data
Haynes 188 damper at tang 1, 1.0G input
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Figure 2.2-61 Low frequency beam optimization curve based on test data
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Figure 2.2-62 Low frequency beam optimization curve based on test data
Haynes 188 damper at tang 2, 1.0G input
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Figure 2.2-63 Low frequency beam optimization curve based on test data
Havnes 188 damper at tang 3 1 0 3input
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Figure 2.2-64 Low frequency beam optimization curve based on test data
Haynes 188 damper at tang 3, 1.0G input
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Figure 2.2-65 Low frequency beam optimization curve based on test data

Haynes 188 damper at tang 4,

1.0G input
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Figure 2.2-67 Low frequency beam optimization curve based on test data
Haynes 188 damper at tang 5, 1.0G input
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Figure 2.2-69 Low frequency beam optimization curve based on test data

Haynes 188 damper at tang 6,

1.0G input
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Figure 2.2-70 Low frequency beam optimization curve based on test data
Haynes 188 damper at tang 6, 1.0G input
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Figure 2.2-71 Low frequency beam optimization curve based on test data
Havhnece 188 damber at tanag 7. 1.0CG inout
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Figure 2.2-72 Low frequency beam optimization curve based on test data
Haynes 188 damper at tang 7, 1.0G input
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Figure 2.2-75 Low frequency beam optimization curve based on test data
Silicon Nitride damper at tang 2, 0.5G input
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Figure 2.2-77 ng.frequgncy beam optimization curve based on test data
Silicon Nitride damper at tang 3, 0.5G input
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Figure 2.2-78 Low frequency beam optimization curve based on test data
Silicon Nitride damper at tang 3, 0.5G input
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Figure 2.2-79 Low frequency beam optimization curve based on test data
c4711con Nitride dambper at tanag 4. 0.5C Tnpnt




S1I
0€T-16 QYA

Strain (u in/in peak)

200
190
180
170
160
150
140
130
120

110
100
90
80
70
60
50
40
30
20
10

Friction Damper Performance
Tang 4 Silicon Nitride 0.5G Input

| I ! | | | I

0 2 4 6 8 10

Normal Load
0O RootS/G A Mid-Span S/G

Figure 2.2-80 Low frequency beam optimization curve based on test data
Silicon Nitride damper at tang 4, 0.5G input
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Figure 2.2-81 Low frequency beam optimization curve based on test data.
Silicon Nitride damper at tang 5, ©.5G input
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Figure 2.2-82 Low frequgncy beam optimization curve based on test data
Silicon Nitride damper at tang 5, 0.5G input
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Figure 2.2-83 Low frequency beam optimization curve based on test data
Silicon Nitride damper at tang 6, 0.5G input
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Figure 2.2-84 Low frequency beam optimization curve based on test data
Silicon Nitride damper at tang 6, 0.5G input
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Figure 2.2-85 Low frequgncy beam optimization curve based on test data
Silicon Nitride damper at tang 7, 0.5C input
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Figure 2.2-87 ng.frequgncy beam optimization curve based on test data
Silicon Nitride damper at tang 1, 1.0G input
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Figure 2.2-88 Low frequency beam optimization curve based on test data
Silicon Nitride damper at tang 1, 1.0G input
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Figure 2.2-89 Low frequency beam optimization curve based on test data
Silicon Nitride damper at tang 2, 1.0G input
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Figure 2.2-90 Low frequency beam optimization curve based on test data
Silicon Nitride damper at tang 2, 1.0G input
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Figure 2.2-92 Low frequency beam optimization curve based on test data
Silicon Nitride damper at tang 3, 1.0G input
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Figure 2.2-93 Low frequency beam optimization curve based on test data
Silicon Nitride damper at tang 4, 1.0G input
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Figure 2.2-94 Low frequency beam optimization curve based on test data

Silicon Nitride damper at tang 4, 1.0G input
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Figure 2.2-95 Low frequency beam optimization curve based on test data
Silicon Nitride damber at tang 5. 1.0¢C invput
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Figure 2.2-96 qu.frequgncy beam optimization curve based on test data
Silicon Nitride damper at tang 5, 1.0G input
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Figure 2.2-97 Low frequency beam optimization curve based on test data
Silicon Nitride damber zt +ancg & 21 060 rmmitd
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Figure 2.3-7 Peak blade jet force in spin test for 19N




161

0€T-16 QYN

BLADE JET FORCE (LBF)

- FIGuxt 8

PHASE 1l

TEST: 3—-1A-4

12 MAR 86

HPOTP WHIRLIGIG

TEST DATE:

/

/

]

/

RAMP 3

Tm :
B

/ )
/ |
——

_—
/’”’/”//’

e RAMP 1
L~ /—
.'-f"""-/
10 20 30
(Thousands
ROTOR SPEED RPM)

Figure 2.3-6 Peak blade jet force in spin test for 12N
excitation, undamped
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type. A coefficient of friction of 0.2 was used, based on the test/analysis comparison of
Section 2.3-1. This coefficient is consistent with the material and surface finish of the
blades and dampers.

The damper for the HPOTP first-stage blade is shown in Figure 2.3-3. It is a first-
generation-type damper that stands vertically between the blades underneath the platforms.
The damper is forced against the platforms of neighboring blades, with a total force of 38
Ibs, and provides damping by frictional means during operation.

The primary modes of interest are the first two modes of the blade; the tangential mode and
the axial mode. The natural frequency of the tangential mode, as measured in the spin test,
is approximately 4,800 Hz. The natural frequency of the axial mode is approximately 9,500
Hz. This compares with the tangential and axial modes of the model, which are 5,089 Hz
and 11,345 Hz, respectively. The first mode can be excited by the 12N excitation at
approximately 24,000 rpm or by the 19N excitation at approximately 14,000 rpm. The
second mode can be excited by the 19N excitation at approximately 30,000 rpm. Spin test
data for the HPOTP first-stage blades without dampers is shown in Figures 2.3-4 and 2.3-
5. The corresponding peak jet forces are shown in Figures 2.3-6 and 2.3-7. Data from
ramp number 4 (test 3-1A-4, 12N excitation, undamped) and ramp number 1 (test 3-1A-1A,
19N excitation, undamped case) were used for the comparison. The corresponding friction-
damped test data are shown in Figures 2.3-8 through 2.3-11.

An initial run of the program BLDAMP was made to find the generalized force scaling
factor, due to the estimation of the peak jet forces. This was done so that analysis results
would match test data for the undamped case. The case of 19N excitation of the axial mode
was used as the scaling point. A generalized force scaling factor of 3.02 was calculated for
this case. This factor was then used for the remaining cases. A parametric study was then
performed using various damper stiffnesses, once the generalized forces were fixed. The
case of 12N excitation of the tangential mode was used to determine this parameter. Results
are shown in Figure 2.3-13. The graph shows that the undamped data point (damper force
= 0.0) agrees very well with test data. Also, the parametric data shows that a damper
stiffness of 20,000 1b/in agrees very well with the friction-damped test data. The response
curve in Figure 2.3-13 can be compared to the test data in Figure 2.3-8. This again shows
the friction-damped amplitudes to be very close. The program BLDAMP predicted a shift in
frequency of resonant response of approximately 4 percent for this case. The test data
shows a shift of approximately 12 percent.

The case of 19N excitation of the axial mode is shown in Figure 2.3-14. The undamped test
data matches the analysis exactly, because the generalized force was scaled from this case.
The friction-damped case also agrees quite well with the test data. The response curve in
Figure 2.3-15 can be compared to the test data in Figure 2.3-9. The program BLDAMP
predicted a shift in frequency of resonant response of approximately one percent for this
case. The test data also shows a negligible shift in frequency.

The case of 19N excitation of the tangential mode is show in Figure 2.3-16. The graph
shows that the undamped data point is somewhat higher than test data. This could be
caused by the equivalent viscous damping in the blade being higher than the one percent
used in the analysis. This data point is taken at a much lower speed. The equivalent
viscous damping could be higher, because the blade is not fully locked in the fir-tree area.
However, the friction-damped response agrees well with the test data. To get a more
realistic comparison, the case could be rerun with the generalized force adjusted, so that the
undamped case matches test data. The response curve in Figure 2.3-17 can be compared to
the test data in figure 2.3-9. The program BLDAMP predicted a shift in frequency of
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Figure 2.23-2 HPOTP finite element model used for modal data
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Figures 2.2-40, 2.2-41, and 2.2-44 for the high-frequency beam. Results show the silicon
nitride damper required a higher value of friction force to achieve the same reduction in
vibration amplitude as the Haynes 188 damper. This indicates that silicon nitride has a
lower coefficient of friction. The test/analysis match for the low-frequency beam, with the
damper at tang 1, gives a friction coefficient of i = 0.05 (see Figure 2.2-30). This value is
approximately four times less than the Haynes 188 friction coefficient, under the same test
conditions. This is in disagreement with the results predicted in Section 2.2.2.3, which are
based on data of a better quality than that used here.

i rison

The test results from a Rocketdyne High-pressure Oxidizer Turbopump (HPOTP) first-
stage blade (P/N RS007707) spin test (see Reference 1) were compared to predictions from
the program BLDAMP. The comparison showed good agreement between test and
analysis results. However, the analytical predictions were highly dependent on damper
stiffness. Since the HPOTP first-stage blade damper stiffness was not readily available,
this parameter was used to tune the analytical model to match test data for one condition.
Two other conditions, utilizing the same damper stiffness as in the first condition, also
matched data very well. In addition, this comparison shows the degree to which the
damper has been optimized.

The Rocketdyne spin pit accomodates a turbomachinery shaft, disk, and turbine blades.
This assembly is spun up to operational speeds in a vacuum by an electric motor. Various
fluid forces can be placed on the blades by means of nitrogen gas jets. In one test series, 12
evenly spaced jets of gas were directed onto the trailing edges of the HPOTP first-stage
turbine blades. A schematic of the jet configuration is shown in Figure 2.3-1. In another
test series, 19 evenly spaced jets were directed onto the blades. The blade response is
measured by strain gages placed on the blades. The strain gage wires are attached to a slip
ring, that allows the signal to be sent from the rotating blades to the stationary test
equipment.

The program BLDAMP and a HPOTP first-stage blade finite-element model were used to
analytically predict the friction-damped response. The finite-element model is a
STARDYNE plate model (shown in Figure 2.3-2). The turbine blade model is fixed at the
root. Modal data from the model were used as input to the BLDAMP program. Modal
stresses were obtained from the trailing-edge root, pressure side location (element number
386 shown in Figure 2.3-2). This location matches the strain gage location in the spin test
data.

Generalized forces for each mode are also needed as input to the BLDAMP program.
Because the blade will have peak responses only when it is being forced at one of its natural
frequencies, only the harmonic components of force that match the natural frequencies of the
blade need to be input to BLDAMP. First, the peak jet-pulse force on a blade was
estimated, using hydrodynamic principles. Then, because the harmonic components of a
pulse are dependent on jet spacing, a Fourier series decomposition was performed for the 12
jets and 19 jets, individually. The first harmonic of the 12 jets was found to be 0.09163 for
a unit pressure pulse, while the first harmonic for 19 jets was 0.14383. The peak jet force is
multiplied by the harmonic factor to give the harmonic force. The generalized forces were
obtained by first matrix-multiplying the modal vectors with a unit vector, in the direction of
the jet force, and then multiplying that resulting vector by the harmonic force.

Equivalent viscous damping of 1 percent was used in the analysis to represent damping due
to fir-tree motion and losses in the blade material. This value is typical for hardware of this
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2.3 COMPARISON OF ANALYSIS AND TEST RESULTS
2.3. nr ing Beam mpari

The friction damping test results of Section 2.2.1 were compared with analytical predictions
made using the the computer program BLDAMP, described in Section 2.1. This
comparison showed good agreement between test and analytical results. However, the
analytical predictions were highly dependent on friction coefficient. Since friction
coefficients were not readily available for the materials used in the test program, this
parameter was used to tune the results to match test data.

Validation of the computer code was accomplished by creating finite-element models of the
two beams, analytically simulating their response, and comparing analytical results to test
data. Modal parameters of the two test beams and stiffness properties of the damper were
input to BLDAMP to obtain the damper performance curves, which are presented in Figures
2.2-28 through 2.2-44. These figures also contain plots of the test data, as was discussed
previously. A sensitivity study was performed, with friction coefficient as the variable
parameter, to obtain a good analytical match with the test data. This parameter was adjusted
until the results from BLDAMP closely matched test results, since friction coefficients are
not well known. This match is clearly shown in Figure 2.2-28, where the test and analytical
results from the low-frequency beam with the Haynes 188 damper are compared, for three
different values of friction coefficient. This figure indicates the best match was found by
choosing | = 0.2 as the friction coefficient. The test was then repeated at a higher G level,
since friction damping is a nonlinear phenomenon. The test/analysis comparison was then
made, using the same friction coefficient found in the previous lower-level test. This
comparison is presented in Figure 2.2-29. The comparison shows a good match between
test and analysis results. A similar procedure was performed for the high-frequency beam
with the Haynes 188 damper, the results of which are shown in Figure 2.2-38. Here, the
friction coefficient necessary for a good test/analysis match was p = 0.05, which is
unrealistically low and does not agree with the value obtained in the low-frequency beam
tests. Subsequent testing of the same configuration at a higher vibration level gave the
results shown in Figure 2.2-39. The coefficient of friction used in this figure is the same as
was obtained from the low-level testing and yields a poor comparison with the test data.
The poor comparison observed is probably due to damper chatter and nonsinusoidal motion
of the shaker, which was prevalent on this beam. Therefore, for this reason, the test data
for the high-frequency beam should be regarded as indicative of general trends only and
these test data should not be used for detailed comparison with analytical results.

A possible explanation, for the abnormally low friction coefficient found for the short beam
(Figure 2.2-38), is that the damper may not have been in contact with the beam, during the
entire cycle of vibration. As mentioned previously, when the beam passed through the
resonant frequency, a loud noise emanated from the damper area and the damper tended to
wander in a direction parallel to the damper knife-edge slot. It was difficult to keep the
damper centered in the slot. Subsequent inspection of the dampers indicated considerable
wear at the damper/test beam interface. The wear pattern observed on the dampers was not
indicative of tangential sliding motion, as would be expected. The pattern suggested the
damper was beating against the beam in a direction normal to the contact surface. It is
believed the damper was not in contact with the beam, during the entire vibration cycle.
Since the analysis assumes damper contact at all times, a lower coefficient of friction would
be required to match the test data, which was taken with only partial contact.

A comparison of the silicon nitride damper test data with analytical results is shown in
Figures 2.2-30, 2.2-31, 2.2-34, 2.2-35, and 2.2-37 for the low-frequency beam and in
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resonant response of approximately 8 percent for this case, while the test data show a
negligible shift in frequency.

The optimization curves in Figures 2.3-12, 2.3-14, and 2.3-16 indicate that the damper is,
for its stiffness, about twice as heavy as it should be for optimal damping of the first two
modes. Also, the figures indicate that a stiffer damper could further reduce resonant
response and decrease the optimum normal force sensitivity.

Overall, the test and analysis correlated very well, although there are a few key parameters
that need to be accurately predicted before the program BLDAMP can be truly useful as a
design tool. The damper stiffness, forcing function, and coefficient of friction are very
important in predicting friction-damped response. Comparisons of test data with analysis,
such as the one described here, are helpful in the determination of these key parameters for
future design work.
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3.0 CONCLUSIONS

A state-of-the-art computer code has been developed for the analysis of friction dampers, as
a result of this program . The new code represents a significant improvement over existing
analytical tools; in that multiple modes of the structure are accounted for, without the use of
expensive time integration techniques. This allows the accurate representation of turbine
blades, using the mode shapes generated from high-fidelity, finite-element models.
Previous analytical methods considered only single modes of simple one degree of freedom
systems.

The new computer code, BLDAMP, was modified to improve input and output formats.
Sample cases have been run, which exactly match those provided by the code developer,
Griffin Consulting. In addition, more realistic cases have been run using the HPFTP first-
stage turbine blade as a test case. Results of the study show that the program is easy to use
and provides answers which appear to be reasonable.

Further comparison of BLDAMP results, against test data from nonrotating test beams and
spin pit data from instrumented turbine blades, has provided a good validation of the code.
Results from the test/analysis comparison show that the normal force that causes the lowest
response was highly dependent on the friction coefficient between the damper and beam
surfaces. This makes prediction of damper performance very difficult, unless friction
characteristics are known for the materials at hand. It was found, however, that once the
friction coefficient was known, damper performance can be reliably predicted using the
BLDAMP computer code.

It can be concluded, from the results of the extensive testing presented in this report, that
friction damping is an effective way to reduce the response of vibrating structures.
Response reductions of over 95 percent, from the undamped configuration, were observed
in the test beam. It was also found that the most effective position to locate the dampers is at
a beam span of 30 percent, or more. The effectiveness of the friction damper remained
relatively constant for damper locations between 30 and 100 percent span. This is a
significant observation, because it was previously thought tip dampers were the only way to
obtain response reductions of the magnitude observed in the testing.

The test data were plotted in nondimensional form and a set of design curves was generated,
which will greatly aid in the selection of damper parameters for future applications. On an
equal level with the development of the BLDAMP computer code, these design curves are
one of the major accomplishments of this program. They provide a much needed base from
which to understand damper behavior.
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4.0 RECOMMENDATIONS FOR FURTHER WORK

The main problem encountered, in the initial friction damper testing reported herein, was the
lack of good signal quality and repeatability from test to test. These problems were solved,
for the most part, in the second test series, where the vibration amplitude was reduced and a
more sophisticated test controller and shaker were used. The testing was still not as
repeatable as desired and improvements could be made to improve the data quality. The
problem centers on the method of applying the excitation to the beam, which was by use of
base motion of the entire test apparatus. Thus, the beam was excited by inertial forces,
which were dependent on the motion of the base. This development necessitated very
accurate control of the shaker. As an improvement, it is suggested that further testing be
done, using an exciter that applies an easily controllable force directly to the beam, without
using base excitation. A magnetic excitation device may be the solution, because it can be
commanded to provide a sinusoidal force and it would not involve any feedback, due to the
response of the beam.

All the test data gathered in this program was from nonrotating beam specimens. Although
the data should be applicable to blades in a rotating environment, there is one major
difference that may alter the results. The rotating environment differs from the nonrotating
test in the method of application of the normal force. Centrifugal accelerations in typical
turbines can be on the order of 150,000 Gs. These accelerations provide normal forces of
the same magnitude as were used in the nonrotating test. However, the ratio of damper
mass to normal force is many orders of magnitude smaller in the rotating test. The small
mass/force ratio in the rotating environment makes it almost impossible for damper chatter to
occur, while in the nonrotating test setup chatter was observed. A logical extension to the
testing already completed would be to perform similar tests using the Rocketdyne whirligig
spin facility.

Another improvement, which would increase the quality of the data, involves damper wear
as the test progresses. In the initial testing, a large amount of damper wear was observed
which was attributed to damper chatter. A black residue formed on the damper contact
surfaces, which undoubtedly affected the results by changing the frictional characteristics of
the interface. Damper chatter was not observed, to any great extent, in the second phase of
testing. However, a small amount of the residue appeared on the damper and beam during
testing. An attempt was made to clean the residue as it appeared, but the cleaning process
was not continuous. It is not known if the residue changed the results. Damper wear will
occur in an actual turbine, but any residue will be removed immediately by the hot-gas
stream. Therefore, an improvement to the testing would incorporate an air jet directed at the
damper to remove the residue as it is produced.

An extension to the testing, which may enhance knowledge of how friction dampers
function, would involve instrumentation of the damper, as well as the beam. Currently,
very simple models are used, which idealize the damper as a massless spring. This may not
be adequate, as the damper may have a dynamic response of its own. For example, a strain
gage mounted on the damper could measure the stretch that occurs before slipping. It may
even determine if slip occurs instantaneously or over a period of time.
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The test data was obtained on a uniform cantilever beam test specimen, vibrating in the first
mode, only. A valuable extension to this work would be to repeat the testing for beam
vibration in higher modes.

Although some turbine blades have mode shapes that are similar to those of cantilever
beams, there are many other instances where the lower modes consist of localized motion of
the airfoil, with little or no motion of the blade as a whole. A test program could be
developed that would generate a set of design curves for complex mode shapes, which are
commonly found in turbine blades. An example, of this type of program, would explore the
capability of friction dampers to eliminate trailing-edge flap modes, which exist in many
applications.
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1. INTRODUCTION

The objective of this report is to summarize the underlying physical
assumptions and mathematics that provide the basis for a computer code,
BLDAMP, that may be used to calculate the forced response of frictionally
damped turbine blades and optimize the design of friction dampers. BLDAMP
will be especially suited for studying SSME turbo-pump vibration in that it
will have the following unique capabilities:

(1). It will simulate mode shape changes induced by the friction
constraints, thus it can be used to analyze dampers located at the
tips of the blades.

(2). It will automatically analyze the damping of torsional modes,
i.e. blade rotations will also dissipate energy.

(3). Stiff-wise blade motion as well as ease-wise motion will be
included in the formulation, thus the code can be used to
analyze stiffwise bending as in the 2nd mode of the HPOTP
blade.

These capabilities are not currently available in any existing computer code.
As a result, the proposed computer code will significantly advance the
state-of-the-art in friction damping analyses. The reasons that BLDAMP can
analyze these types of problems is because a more general mathematical
formulation is used that incorporates more physical features of the
blade-damper system. Specifically, mode shape changes can be taken into
account because the problem is formulated in terms of receptances rather
than a specific mode of response.” Torsional modes may be analyzed because
friction contact is assumed to occur at four points on each blade and since
the points do not lie on the center of rotation the frictional forces produce a
resisting moment which damps torsional modes. Stiff-wise blade motion is
included in the formulation by considering that the blade may move in two
independent directions at the damper contact point. The mathematical basis
of each of these features is presented in this report.

An important point to note is that the analysis of non-linear vibration
problems is difficult. The more degrees-of-freedom or complexity that is
introduced in modelling a problem the more computer time is required to
solve it, and, in fact since you ultimately must solve systems of non-linear
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algebraic equations, the algorithm may have difficulty converging if the
system of equations is too large. As a result, developing a useful code
involves making trade-offs between either having a tractable problem or
including more complex physical features of the system. For this reason, it
is important to initially mode! the problem as simply as possible and develop
a code that works in an efficient manner. Once the baseline code is
developed and tested then additional features can be incorporated if they are
needed.

This report first summarizes the mathematical formulation of the problem,
gives the input requirements of the code and a flow chart, discusses
potential enhancements to the code that may be incorporated at a later time,
and then provides some concluding remarks.
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2. FORMULATION

2.1 PTANCE FORM N OF PON

Initially, we consider the response on an individual blade. The aerodynamic
forces that act on the blade are assumed to be harmonic (refer to Fig. 1), i.e.

jot

£xt) = f, Fx) ¢ 6

where bold letters indicate vectors or matrices. The friction forces are
given by

iot

£(t)=1 ¢ @

In both expressions the phase of the quantities are included by considering F
and f; complex quanitities (physically the solution corresponds to the real

parts of each of the quantities of interest).

The response of the blade is given by the displacement vector

t

u(® =0, e 3)

and by the stress vector

c (=5 et 4)

where i takes on integer values that correspond to points of interest on the
blade. In particular, i equals 1 through 4 corresponds to the damper contact
points as indicated in Fig. 1 and i =5 is a typical reference point at which we
wish to know the vibratory stress.

The receptances are defined in terms of the response at a point of interest
due to a sinusoidal excitation at a given point. in particular, the
displacement at the ith point due to the external excitation is

E iot

E ,
u=fre )

1
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and thé displacement at the ith point due to an unit excitation at the jth
point is

¥=R e (6)

Then since the blade is linear, from (3) and (S)A the displacement
coefficients are given by

4
E
U =+ DRy, ™
and analogously the stress coefficients by

4
E
5, = 1,5+ Zl S, 1 ®)
J:

2.2 CALCULATING RECEPTANCES

Many engineers are more familar with real receptances. In this approach if
the excitation on a simple spring/mass oscillator is given by

f(t) = (1) cos wt &)

then the displacement would be given by

u(t) = r_COos Ot +T, sin @t (10)

Ll

where r. and rg are referred to as the real receptances. Real receptances are

readily related to complex receptances. For example, alternatively we could
write (9) as

£(1) = Real(e'®") 1)
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and (10) as
u() =Real { r-ir)e ") (12)

thus the complex receptance, rg-irg, is just a linear combination of the real
receptances.

Receptances can be calculated from modal information in the foliowing
manner. Suppose u satisfies the equation of motion

Md—‘l +ci‘3 +Ku = Fe® (13)

dt?

where M, C and K are matrices derived from finite element analyses of the
blade and F is a force acting on the blade (it could correspond to a unit
excitation at the jth node, for example). Let ¢j be the modal displacement

vector associated with the jth undamped mode, i.e. let 4’1 satisfy
=m§ M ¢, (14)

where ] is the jth resonant frequency of the blade. Then from linear algebra

we know that the modal displacement vectors are orthogonal with respect to
M, ie.

6 I'M ¢ ; =0 whenn=j (15)

n

Let C=a M+ B K. Then if the response u is

iot

u=Ue ' (16)

it may be shown (using (14) and (15)) that the coefficients U are given by

U= 2 an

k+1mc mm
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where

L. T
mj-¢ i M ¢ ; (18a)
k=m o (18b)
- i T
and
¢=om + Bkj (18¢c)

Thus, the receptances of equation (7), Rij, can be found from (17) provided

we let F be a unit excitation at the jth node and calculate the components of
U that correspond to the ith node.

2.3 TUNED SYSTEM THEOR

The goal of this section is to rewrite the equation that governs blade motion,
equation (7), in terms of the relative motion between blades. This does two
things for us. The first is that it becomes clear that for a tuned bladed disk
all blades respond with the same amplitude (phases differ by a fixed amount)
and, consequently, the problem can be formulated in terms of a single blade
or in terms of the motion between a pair of blades. In this section we will
derive the governing equations in terms of the relative motion between
blades, since it is these motions that act on the friction dampers and that
will be related in a later section to the damper forces, f;.

The tuned system assumption is that all the blades are identical and
consequently have exactly the same frequencies of vibration (thus, they are
tuned ). It is also assumed that the blades see exactly the same excitation
except for the phase of the excitation which differs by a fixed amount, ¢,
from blade to blade, where

2nn

N _
19) -
n (19)

Q:
and where n_, equals the number of nodal diameters of the response (also
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equals the engine order of the excitation) and where n, is the number of
blades on the disk.

Consider Fig. 2, a schematic of a section of the bladed disk assembly. In this
schematic we are looking down on a typical blade in the center and two
blades on either side. The numbered nodal points are the damper contact
points. Each nodal point has displacements and forces in the x and y
directions as indicated in Fig. 3. Because of the phase difference of (19) the
displacements and forces in the neighboring blades are (quantities with (')
refer to the blade on the right, those with (") refer to the blade on the left
and quantities with no (') refer to the center blade)

U' = U ciw (202)

i i
F. (20b)

1 1

"

™

oﬂ
R:)

Thus, equation (17) can be written in terms of the motions that act on the
damper between the center and right hand blades, i.e in terms of U,, U,, U,

and U,' and in terms of the forces that act on the damper, F,, F,, F3', and
F,. From (17) and (20) we can write

E -ig ; .
U =for; +Ryf) +R, 6 +e T[R; G +R, 1, ] 1)

We can use (21) for i = 1,2. From (20) (a) and (21)

. 0. . E : v
U, = e7lfyr +R)f +R,0] +R, 1 + R, 1, 22)
which we can use when i equals 3 or 4. Thus, at this point in the
formulation we have four equations and eight unknowns (4 displacements and
4 forces that act on the damper). The goal of the next sections will be to
relate the damper forces and displacements and to complete the formulation.

2.4 DAMPER THEORY

The objective of this section is to simplify the formulation and reduce the
number of unknowns. The blades and a simplified damper configuration are
depicted in Fig. 4. Note that in order to simplify the formulation it is
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assumed that dampers act independently on the upper and lower pairs of
contact points. It is also assumed that the dampers' inertia are negligible
(i.e. they behave as springs). Thus, from equilibrium there are two
independent force vectors since

' ey, E U |
Uy = e [fpr; +R;f, +R, 0] +R,f, +R 1, 23)

The damper force can be related to the relative motion across the damper,
thus the independent displacement quantities of interest are

w,=U, -U, (24a)
w,=U,-U, (24b)

from (21) and (22) we can write

E o E § :
w, = folr -] + [R;+R,-¢"*R,-¢'*R, I,

+[R, +Rg-¢"*R,-¢'*R,, 11, 25)

and
W = Gl €751+ (R + Ry -¢ " Ry - Ry, I,

+[Ryy +Ryy-¢ "Ry - Ry 1L 26)

or
w =[w,, w1 =fr= + RF* @7)
where |
F =[f.0,]" |

and r*E and R* are defined to be consistent with (25) and (26).

2.5 DAMPER FORCES: F* = F*(w) FOR TWO DIMENSIONAL MOTIONS
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2.5.1 Differences Between One and Two Dimensional Motion: A Special Case
of Circular Motion

Consider the case of damper element depicted in Fig. 5 (a) in which the
motion is only in one direction. The force-displacement relationship is
depicted in Fig. 5 (b). Note that the damper slips during part of the cycle no
matter how large the displacement amplitude becomes. Now consider the
case of a damper element in which the input displacement w is a vector that
can move in two directions. |f the input motion (i.e. the relative motion
between the blades) is circular then w can be given as

w = wy [ cos e, sin o]’ 28)

and if the damper spring is isotropic, i.e. the damper stifiness matrix is of
the form

f=Kz and K=k,I where 1is the unit marrix 29)

then the motion of the damper will be circular, but may lag the input by an
angle, 8. Mathematically,

BN

[ cos(wt - 8) , sin (wt - 8) 1T (30)
kd

=

where

8-cos"( 12 ]
= wo ky

where pN is the magnitude of the force required for slip. Note that slip only
occurs if w, > uN/k, and that when slip does occur the damper never sticks.
This is a fundamental difference between friction contact in one and two

dimensions, i.e. for large motions if the motion is two dimensional the
damper slips all of the time. ’

2.5.2 Establishing the Principal and Minor Axes of a Vector Following an
Elliptical Orbit
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For two dimensional motions, the displacement and friction forces at
contacting points can be represented as two component vectors. In the use
of receptance formulation, each component of the vector is assumed to be
sinusoid with an arbitrary phase. In this section it will be shown that such
vectors follow an elliptical path and that as a consequence the magnitude of
the vector has a maximum equal to the length of the principal axis of the
ellipse and has a minimum equal to the length of the minor axis. This section
summarizes the mathematics necessary to determine the characteristics of
the ellipse. This information is important in that it provides a basis for
establishing whether or not the force in a node is large enough to cause slip. .

Considering a periodically varying vector of the form

[ cosat]
£)=F | sinax | 61

where

Figure 6 shows that such vector follows an elliptical path whose principal
direction is at an angle ¢, with respect to the x direction

Using a singular value decomposition of the matrix F, one may write

- ll 0 H
F={z,,2)] 0 A, s'g (32)

cosd, -sind,
[2,:2)] = sing, cosd,

where

and
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[cos¢, -sing,
[sy:8,] =

(7 | Lsinq), cosd, |

From (31) and (32), one can get

f(t) = llcos(mt -6z, + Z.zsin((m -6z, (33)
where
A, = %{\/ (o + 6,07 + (e - )" +f (uc - ) + (s + fyc)z}
A, = .;_{ (Fpe + £)” + (e - £)” + J (e = £ + (£ + fyc)z}

[ [+t £~ £y ]|
O3 e R e .

It is clear that z4 is a unit vectbr pointing in the direction of the principal
axis of the ellipse, 44 is the length of the principal axis, A, is the length of

the minor axis, and ¢ is the phase lag of the motion.

2.5.3 Elliptical Motion When Slip at Contact Point Does Not Occur

Consider the case when the contacting point does not slip. Then

I=W (35)
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- where w is the motion between blades and z is the motion of the damper.

If w is assumed to be sinusoid, then w can be expressed as the following.

|’wxc wxs‘] cosmt
w= Lwyc wy;J sinet . (36)

and the friction force becomes

o g g -

Then, using equation (33), it is seen that slip does not occur when A4<_puN.

2.5.4 Elliptical Motion at a Fully Slipping Node

As the periodical motion becomes larger (A4> uN), slip at the interface
occurs. The problem of analyzing slip-stick motion for the two-dimensional
case is very complex. However, if the motion is large enough, one can
assume that the interface slips all the time. Since w is large, the motion
across the contact point is given by

V=W-1:W (38)

By using equation (33) and rotate the coordinate frame to align with the
principal axes, v can be expressed as

a cos9
b sin®

where 8 = ot- ¢ and the friction force
f = -pN iVl
becomes
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- a sinB ]
w/ a? sin%0 + b2 cos20

f(t) = - uN 40)
+ b cos6

Lw/ a? sin?0 + b2 cosze_

It is seen that f is not a sinusoid. For first order approximation, f may be
expanded in a Fourier series to obtain its fundamental harmonlc components.
As a result, f can be expressed as

Fi(ab) Fiab)| [cosé
(O=ENlpear) Fab| Lsine “1)

where

yay
Fi - _%_ J‘ a sinf cos@ a0
0 1/;1 sinZ8 +b cos20

zrl
F =_'11‘_ J’ a sin sir;e 0
14 ‘/ a2 sin20 + b” cos?0
zrl
Fo= "11‘_ j -beosBeosB 49
1§ v a?sin?0 + b* cos?6
48
F:, =_Tl_ J -bcosB sinB 48
19 \F sin%0 +b cos20

It may be shown that F,© and Fys are zero and F,® and ch can be found
explicitly in terms of elliptic integrals. '

2.5.5 |Interpolation Method for Estimating Friction Force
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The problem of analyzing slip-stick motion for the two-dimensional case is
very complex. Since we know the force displacement relationship for the
damper when the damper is stuck (equation (37)) and when the interface is
fully slipping (equation (41)), we can set up an interpolation method for
estimating the harmonic coefficients of the friction force for intermediate
values of displacement.

When the motions are sma", the friction force in (37) is pure spring force
which may be expressed as fg(w). When the motions are large, the friction

force in (41) is pure damping force which may be expressed as fy(w). Then a

. general formulation of interpolation for estimating the friction force can be
expressed as

f=s@A) f(w) + DAA,) £ (W) 42)

where A4 and A, are singular values of the matrix KW and s(A4,A5) and D
(A4,A0) should meet the following boundary conditions.

{S(XI,XZ) =1
A< N

D 0"1'7‘2) =0 (43a)
S(hyA) =0
A, >>uN D@L, A) =1 (43b)

To the present time, the selection of these two interpolation functions is not
clear. The interpolation functions used in BLDAMP are adapted from the
solution for one-dimensional motion. They are

1 A, spN
S = 1L (6" 0.5 sin(26"] A, >uN - “44)
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where 8 = cos 1[1 - 2uN/A4].
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0

m
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3. CODE INPUT AND PROGRAM FLOW CHART

The input requirements for the code are:

A. Blade Information:

Z e

the number of blades.
engine order of excitation = (# of nodal diameters).

number of modes (all modes correspond to E, nodal diameter disk

modes).
resonant frequency of each mode, i = 1,......, N,

modal displacements for each mode.
number of reference points

modal stress vector for reference points.
modal mass for each mode.

modal damping for each mode.

B. Damper Properties:

W
Kdi

Hi

, N® and K@ , N .. damper stffness matrices for 2 slip loads i=1,2
i di H

coefficients of friction for upper and lower dampers.

@, N* N, =a N and N, = (1-a) N*

C. Excitation Options

1.

Simulate a tracking plbt, i.e. find stress versus frequency of
excitation for a given input (refer to Fig. 7(a)).

2. For a given level of inp'ut excitation find the peak stress as a

function of N* (refer to Fig. 7(b)).

3. For a given damper normal load find the peak stress with the

damper in place as a function of what the stress would be
without the damper (refer to Fig. 7(c)).

The user will be able to select what type of analysis he would like to run.
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The code will call a subroutine to calculate the undamped response of the
blade and establish the blade's receptance to the external excitation. There
will be a default version of the subroutine which only requires the user to
identify which mode is of interest and the magnitudes of the peak modal
stresses that would occur if the damper is not present. Calculations will
then proceed automatically tracing the response of the mode of interest. The
code will be written so that the function of this subroutine can be replaced
with a user written version. Thus, the user will be able to specify his own
excitation model as required.

The flow chart for the code is indicated in Fig. 8.
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FIGURE 3. NODAL FORCES AND DISPLACEMENTS
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FIGURES ONE DIMENSIONARL FRICTION ELEMENT
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FIGURE 6. ROTATION OF AXES YIELDS PRINCIPAL DIRECTIONS OF
ELLIPSE
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READ INPUT CODE
START. )—b * BLADE PROPERTIES
* DAMPER PROPERTIES

* EHCITATION

¥

COMPUTE FREQ. RANGE
& BLADE RECEPTANCES
* UNDAMPED RESPONSE
* OTHER PROPERTIES

v

CALCULATE RANGE ON
INPUT & SET UP DO LOOPS

OPTIONARL

<@ ROCKETDYNE

REROCODE INPUT

ASSEMBLE NON-LINERR
EQUATIONS

v

SOLUE NON-LINERR EQUS.
* FRICTION COEFFICIENTS
* DAMPER STIFFNESS

* RECEPTANCE INTERPOL.

NON-LIN. EQU. SOLUER

OUTPUT:
IWRITE AMPLITUDES

v

( 60 TO NEKT CASE ? ) NO

FIGURE 8 FLOLW CHART
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6.0 APPENDIX

6.2 BLDAMP REQUIRED INPUT DATA AND CODE LISTING
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BLDAMP INPUT DATA

TITLE - 72 Character Title

ITYPE 1 = Frequency Response Plot
‘ 2 = Stress vs. Normal Force Optimum Curve
3 = Performance Curve
NBLADE, NEODER, NMODES - Number of blades, Engine order of excitation,
Nunmber of modes

EMASS, WMODAL, DAM - Generalized mass, Modal frequency, Viscous
. modal damping ratio

(Repeat NMODES times)

U(1,1), U(1,2), U(1,3), ... , U(1,NMODES) - x direction modal
displacement of damper
centact point one

U(2,1), 0(2,2), U(2,3), ... , U(2,NMODES) - ¥y direction modal

. . displacement of damper
contact point one

u(s,1), u(s,2), u(s,3), ... » U(8,NMODES)

NRS,NCO - Number of reference stresses, Number of components for
each reference stress

SR(1,1), SR(1,2), ... » SR(1,NMODES) - Modal stresses
SR(2,1), SR(2,2), ... » SR(2,NMODES)
SR(NRS*NCO, 1) , SR(NRSXNCO,2), ... , SR(NRSXNCO,NMODES)
FNM11 - Lower normal locad for contact point 1
K11, K12, K21, K22 - Damper stiffness matrix
FNM12 - Upper normal load for contact point 2
K11, K12, K21, K22 - Damper stiffness matrix
FNM21 - Lower normal load for contact point 1
K11, K12, K21, K22 - Damper stiffness matrix
FNM22 - Upper normal load for contact point 2
K11, K12, K21, K22 - Damper stiffness matrix )
FNMC11,FCOE11 - Lower normal load, friction coefficient
FNMC12,FCOE12 - Upper normal load, friction coefficient
FNMC21,FCOE21 - Lower normal load, friction coefficient
FNMC22,FCOE22 - Upper normal load, friction coefficient
ALPHA - Fraction of normal load at contact point 1

RI/RD 91-230
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IAL - Type of input excitation data

If IA1 = 1 Then,

PSTRESS(1), SVRM(1) - Max undanped stress, modal stress (mode 1)
PSTRESS(2), SVRM(2)

PSTéESS(NMODESi, SVRM(NMODES)

If 1Al 2 Then,

GF(l) - Generalized force for mode 1
2) - Generalized force for mode 2

GF ( NMODES)

If ITYPE = 1 : Frequency Response Analysis

WMIN, WMAX, DW - Minimum excitation frequency, maximum excitation
frequency, frequency increment

FN - Damper normal load (1lbs)

If ITYPE = 2 : Optimum N Curve Analysis
NP, NC, NONMOD - Stress reference point, component number for
optimum curve, nonlinear mode number

If ITYPE = 3 : Performance Curve Analysis

FN - Damper normal load

NP, NC, NONMOD - Stress reference point, component number for
performance curve, Nonlinear mode number
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PROGRAM BLDAMP

BLDAMP CALCULATES THE FORCED RESPONSE OF FRICTIONALLY
CONSTRAINED TURBINE BLADES AND CAN BE USED TO OPTIMIZE
THE DESIGN OF FRICTION DAMPERS

TAPE7=INPUT, TAPEG=0UTPUT

AUTHOR -~ CHIA-HSIANG MENQ

IMPLICIT DOUBLE PRECISION (A-H,0-2)

COMMON/NUMB/NBLADE ,NEODER , NMODES ,NRS,NCO

COMMON/MAIN/PHASE

COMMON/BLADE/U(B,10),SR(15,10),EMASS(10) ,WMODAL(10),
DAM(10)

COMMON/DAMPER/SMTX11(2,2),SMTX12(2,2),SMTX21(2,2),5MTX22(2,2)
$1(2,2),52(2,2) ,FCOE11,FCOE12,FCOE21,FCOE22,FNM11,FNMI2,
FNM21,FNM22,FNMC11,FNMC12,FNMC21,FNMC22,COE1, COE2

COMMON/NLOAD/FN1,FN2, ALPHA

COMMON/CONVE/CEPSI

CHARACTER TITLE*72,FINAME*20, FONAME*20

WRITE(*,5)

FORMAT(//,2X, "ENTER INPUT FILE NAME’,//)
READ(*,7) FINAME

FORMAT(A20)

WRITE(*,8)

FORMAT(//,2X, "ENTER OUTPUT FILE NAME',//)
READ(*,7) FONAME

OPEN(7,FILE=FINAME,STATUS='0LD"*)
OPEN(6,FILE=FONAME,STATUS="NEW")
READ ANALYSIS TYPE
ITYPE=1 FREQUENCY RESPONSE PLOT

ITYPE=2 OPTIMUM CURVE (STRESS VS. NORMAL FORCE)
ITYPE=3 PERFORMANCE CURVE (DAMPED VS. UNDAMPED STRESSES)

READ(7,10) TITLE
FORMAT (A72)
READ(7,*) ITVPE
READ MODAL INFORMATION AND DAMPEK PROPERTLIES
CALL READMD
PRINT INPUT PARAMETERS
CALL PRINT(TITLE)
IF(ITYPE .EQ. 1) THEN
CALCULATE FREQUENCY RESPONSE PLOT
CALL 101

ELSE IF (ITYPE .EQ. 2) THEN
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CALCULATE OPTIMUM CURVE
CALL I02
ELSE IF (ITYPE .EQ. 3) THEN

CALCULATE PERFORMANCE CURVE

CALL 103
END IF
END

SUBROUTINE READMD
READMD READS BLADE AND DAMPER INFORMATION

NBLADE - THE NUMBER OF BLADES

NEODER - ENGINE ODER OF EXCITATION

NMODES - THE NUMBER OF MODES; UP TO 10 MODE
EMASS - MODAL MASS

WMODAL - MODAL FREQ.

DAM - MODAL DAMPING RATIO

U - MODAL DISP. AT CONTACT POINTS

NRS - THE NUMBER OF REFERENCE STRESS POINTS

S

(5 M

AX)

NCO ~ THE NUMBER OF MODAL STRESS COMPONENTS (3 MAX)

SR ~ MODAL STRESS AT REFERENCE POINTS

SMTXt1 - DAMPER STIFFNESS MATRIX AT CONTACT POINT #1

AT LOWER BOUND OF THE NORMAL LOAD

SMTX12 - AT THE UPPER BOUND OF THE NORMAL LOAD
SMTX21 - DAMPER STIFFNESS MATRIX AT CONTACT POINT #2

AT LOWER BOUND OF THE NORMAL LOAD

SMTX22 - AT THE UPPER BOUND OF THE NORMAL LOAD

FNM11 - LOWER BOUND OF THE NORMAL LOAD AT POINT
FNM12 - UPPER BOUND OF THE NORMAL LOAD AT POINT
FNM21 - LOWER BOUND OF THE NORMAL LOAD AT POINT

FNM22 - UPPER BOUND OF THE NORMAL LOAD AT POINT
FCOE11 — FRICTION COEFFICIENT AT CONTACT POINT #1

AT LOWER BOUND OF THE NORMAL LOAD

FCOE12 - AT THE UPPER BOUND OF THE NORMAL LOAD
FCOE21 - FRICTION COEFFICIENT AT CONTACT POINT #2

AT LOWER BOUND OF THE NORMAL LOAD
FCOE22 - AT THE UPPER BOUND OF THE NORMAL L
FNMC11 - LOWER BOUND OF THE NORMAL LOAD AT
FNMC12 UPPER BOUND OF THE NORMAL LOAD AT
FNMC21 LOWER BOUND OF THE NORMAL LOAD AT
FNMC22 - UPPER BOUND OF THE NORMAL LOAD AT
ALPHA FRACTION OF NORMAL LOAD AT CONTACT
CEPSI MAX ALLOWABLE ERROR FOR CONVERGENCE

IMPLICIT DOUBLE PRECISION (A-H,0-2)
COMMON/NUMB/NBLADE ,NEODER ,NMODES ,NRS,NCO
COMMON/MAIN/PHASE

0AD

POINT
POINT
POINT
POINT
POINT

£
#1
#2
#2

COMMON/BLADE/U(8,10),SR(15,10) ,EMASS(10) ,WMODAL (10),

DAM(10)

COMMON/DAMPER/SMTX11(2,2),SMTX12(2,2),SMTX21(2,2),5MTX22(2,2),
$1(2,2),52(2,2),FCOEV1,FCOE12,FCOE21,FCOE22,FNMI1 FNMI2,

FNM21,FNM22,FNMC11,FNMC12,FNMC21,FNMC22,COE
COMMON/NLOAD/FN1,FN2,ALPHA
COMMON/CONVE/CEPSI

,COEZ2
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CEPSI=1.0D-09

READ(7,*%) NBLADE,NEODER,NMODES
PHASE = 2.0%3.1415927%NEODER/NBLADE
DO 10 I=1,NMODES
10 READ(7,%) EMASS(I),WMODAL(I),DAM(I)
Do 20 I=1,8
20 READ(7,*) (U(I,J),J=1,NMODES)
READ(7,*) NRS,NCO
NN=NRS*NCO
DO 40 I=1,NN
40 READ(7,*%) (SR(I,J),J=1,NMODES)
READ(7,*) FNMII
READ(7,%) SMTX11(1,1),SMTX11(1,2),SMTX11(2,1),SMTX11(2,2)
READ(7,*) FNM12
READ(7,%) SMTX12(1,1),SMTX12(1,2),SMTX12(2,1),SMTX12(2,2)
READ(7,%) FNM21
READ(7,%) SMTX21(1,1),SMTX21(1,2),SMTX21(2,1),SMTX21(2.2)
READ(7,%) FNM22
READ(7,%) SMTX22(1,1),SMTX22(1,2),SMTX22(2,1),SMTX22(2,2)
READ(7,.*) FNMC11,FCOE11
READ(7,*) FNMC12,FCOE12
READ(7,%) FNMC21,FCOE21
READ(7,*) FNMC22,FCOE22
READ(7,*) ALPHA
RETURN
END

SUBROUTINE PRINT(TITLE)
PRINTS PROBLEM INPUT DATA

IMPLICIT DOUBLE PRECISION (A-H,0-2Z)
COMMON/NUMB/NBLADE ,NEODER ,NMODES ,NRS,NCO
COMMON/MAIN/PHASE
COMMON/BLADE/U(8,10),SR(15,10) ,EMASS(10) ,WMODAL(10),

1 DAM(10)
COMMON/DAMPER/SMTX11(2,2),SMTX12(2,2),SMTX21(2,2),5MTX22(2,2),
1 S1(2,2),S2(2,2),FCOE11,FCOE12,FCOE21,FCOE22,FNM1 1 ,FNM12,
2 FNM21,FNM22 ,FNMC11,FNMC12,FNMC21,FNMC22,COE1, COE2
COMMON/NLOAD/FN1,FN2,ALPHA

COMMON/CONVE/CEPSI

CHARACTER MD*4,TITLE*72

DATA MD/ *MODE’/

WRITE(6,10)

10 FORMAT(/,3X,’-- BLDAMP V1.1 DECEMBER 5,1987 --)
WRITE(6,20)

20 FORMAT(/,3X, ‘WRITTEN BY C-H. MENQ,GRIFFIN CONSULTING,1987",
1 /,3X, WARNINGS: 1. THESE CALCULATIONS ARE BASED ON',
2 /,15%,° APPROXIMATIONS THAT MAY LEAD TO SIGNIFICANT’,
3 /,15X,’ ERRORS IN CERTAIN CASES--REFER TO USER MANUAL.',/,
4 /,13X,°2. THE SOLUTION ALGORITHM IS ITERATIVE & MAY NOT‘,
5 /,16X, CONVERGE. THIS MAY LEAD TO EXCESSIVE COMPUTER USAGE.’)
WRITE(6,30)

30 FORMAT(1H1,2X, ' #**%%+% PROBLEM DESCRIPTION *#*x44%')
WRITE(6,40) TITLE,NBLADE

40 FORMAT(/,2X,A72,//,3X, NUMBER OF BLADES',b26X,‘'=",14)
WRITE(6,50) NEODER
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50
60
90

110

120
130
140

145

160
160
170
180

190

230
235

300
310
320
330
340
350

360

370

FORMAT(3X, 'ENGINE ORDER OF EXCITATION', 16X, '=',14)
WRITE(6,60) NMODES

FORMAT (3X, ‘NUMBER OF MODES’,27X,°'=',14)
WRITE(6,90) NRS
FORMAT (3X, 'NUMBER OF STRESS REFERENCE POINTS’,9X,’'=',14)

WRITE(6,110)

FORMAT(///,3X, ‘ss#ss3% MODAL INPUT DATA #**¥xsx%a2' // GSX,6 ‘MODE",
1 5X, 'FREQUENCY (HZ)‘.5X, 'GENERALIZED MASS',5X, 'DAMPING RATIO’,/)
WRITE(6,120) (I,WMODAL(I),EMASS(I),DAM(I),I=1,NMODES)
FORMAT(/,5X,13,6X,1PE12.5,8X,1PE12.5,7X,0PF10.4)
WRITE(6,130)

FORMAT(//,3X, "MODAL DISPLACEMENTS AT DAMPER CONTACT POINTS',/)
WRITE(6,140) (MD,I=1,NMODES)

FORMAT (3X, ‘CONTACT’ ,6X,B8(A4,11X))

WRITE(6,145) (I,I=1,NMODES)

FORMAT (4X, 'POINT’,7X,8(13,12X))

DO 170 1=1,4

K=2%1-1

KK=2%1

WRITE(6,160) I,(U(K,J),J=1,NMODES)
FORMAT(/,4X,13,4X,8(1PE12.5,3X))

WRITE(6,160) (U(KK,J),J=1,NMODES)
FORMAT(11X,8(1PE12.5,3X))

CONTINUE

IF(NRS .EQ. 0) GO TO 235

WRITE(6,180)

FORMAT(//,3X, "MODAL STRESSES AT STRESS REFERENCE POINTS’,/)
WRITE(6,190) (MD,I1=1,NMODES)

FORMAT (2X, "REFERENCE’ ,5X,B8(A4,11X))

WRITE(6,145) (I1,I=1,NMODES)

NN=NCO#*NRS

DO 230 I=1,NN

WRITE(6,150) I,(SR(I1,J),J=1,NMODES)

CONTINUE

WRITE(6,300)

FORMAT(1H1,1X, ‘#***+%% DAMPER PROPERTIES ##***¥x° //)
WRITE(6,310)

FORMAT (7 ,3X, 'DAMPER CONTACT POINT 1:')

WRITE(6,320) FNM11

FORMAT (/,5X, ‘LOWER NORMAL LOAD = ,F14.4)
WRITE(6,330)

FORMAT(/,5X, 'DAMPER STIFFNESS MATRIX: ')
WRITE(6,340)SMTX11(1,1),SMTX11(1,2)
WRITE(6,350)SMTX11(2,1),SMTX11(2,2)

FORMAT (7X, ' KXX, KXY ©,2(2X,F14.4))

FORMAT (7X, ‘KYX,KYY ©,2(2%x,F14.4))

WRITE(6,360) FNM12

FORMAT(/,5X, ‘UPPER NORMAL LOAD =',F14.4)
WRITE(6,330)

WRITE(6,340)SMTX12(1,1),SMTX12(1,2)
WRITE(6,350)SMTX12(2,1),5MTX12(2,2)

WRITE(6,370)

FORMAT(//,3X, 'DAMPER CONTACT POINT 2:°)

WRITE(6,320) FNM21

WRITE(6,330)

WRITE(6,340)SMTX21(1,1),SMTx21(1,2)
WRITE(6,350)SMTX21(2,1),SMTX21(2,2)

WRITE(6,360) FNM22

WRITE(6,330)

WRITE(6,340) SMTX22(1,1),SMTX22(1,2)

1w
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WRITE(6,350) SMTX22(2,1),SMTX22(2,2)

WRITE(6,380)

FORMAT(//,10X,’-- COEFFICIENT OF FRICTION --')

WRITE(6,310)
WRITE(6,320) FNMCII
WRITE(6,390) FCOE11

FORMAT(/ ,5X, ‘COEFFICIENT OF FRICTION

WRITE(6,360) FNMC12
WRITE(6,390) FCOE12
WRITE(6,370)
WRITE(6,320) FNMC21
WRITE(8,390) FCOE21
WRITE(6,360) FNMC22
WRITE(6,390) FCOE22
WRITE(6,400) ALPHA

FORMAT(/,5X, "ALPHA = ‘' 1X,F5,2)
WRITE(6,410) CEPSI
FORMAT(/,5X,’CEPSI = ‘,1PE12.5)
RETURN
END
SUBROUTINE 101

101 - PERFORM TRACKING PLOT

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

COMMON/EXCIT/GF(10) ,MODE

WRITE(6,10)

FORMAT (1H1,3X, 'ANALYSIS TYPE SELECTED:

READ GENERALIZED FORCES FROM STRESS?

IA1=1 YES
IA1=2 NO

READ(7,*) IA1
IF(IA1 .EQ. 1) THEN
CALL READS

ELSE

CALL READGF

END IF

READ FREQUENCY RANGE

READ(7,*) WMIN,WMAX,Dw
WRITE(6,15)
FORMAT(/,4X, ' FREQUENCY RANGE:
WRITE(6,20) WMIN,WMAX, K DW
FORMAT(7X, ‘MINIMUM FREQUENCY
7X, 'MAXIMUM FREQUENCY
7X,FREQ. INCREMENT

READ TOTAL DAMPER LOAD

READ(7,*) FN

WRITE(6,30) FN
FORMAT (4X, ' TOTAL DAMPER LOAD
CALL FREQRP(WMIN,WMAX,KDW,FN)
RETURN

END

‘)

‘,F10.
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CALL READS
ELSE
CALL READGF
ENDIF

READ DAMPER NORMAL LOAD
READ(7,%) FN

WRITE(6,30) FN
FORMAT(/,7X, ‘NORMAL LOAD =°,F12.7)

READ REFERENCE STRESS, COMPONENT NUMBER,

READ(7,%*) NP,NC,NONMOD
WRITE(6,40) NP,NC,NONMOD

40 FORMAT(/,3X,'PEAK RESPONSE IS BASED ON',//,

1
2
2

15
20

1

65X, 'STRESS NUMBER =,13,/,
5X, 'COMPONENT NUMBER =‘,13,/,
5X, ‘MODE NUMBER =',13)

CALL PERFOR(NONMOD,FN)

RETURN

END

SUBROUTINE READGF
READS GENERALIZED FORCES

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
COMMON/EXCIT/GF(10) ,MODE

COMMON/NUMB/NBLADE ,NEODER ,NMODES ,NRS,NCO

DO 20 I=1,NMODES
WRITE(6,10) 1

FORMAT(/,7X, 'EXCITATION OF MODE NUMBER’,1X,12)

READ(7,%) GF(1)
WRITE(6,15) GF(I)

FORMAT(/,7X, 'GENERALIZED FORCE = ' ,1PE15.5,/)

CONTINUE
RETURN
END

SUBROUTINE RKREADS

READ PEAK STRESS 8 MODAL STRESS THEN CALCULATE

GENERALIZED FORCE
PSTRESS = MAXIMUM UNDAMPED STRESS
SVRM = MODAL STRESS

IMPLICIT DOUBLE PRECISION (A-H,0-2)
COMMON/EXCIT/GF(10) ,MODE

COMMON/NUMB/NBLADE ,NEODER ,NMODES ,NRS,NCO

COMMON/BLADE/U(8,10),SR(15,10) ,EMASS(10) ,WMODAL(U),

DAM(10)
DO 50 I=1,NMODES
READ(7,*) PSTRESS,SVRM
WRITE(6,10) I

10 FORMAT(/,7X, EXCITATION OF MODE #',1X,12)

20
1

WRITE(6,20) PSTRESS,SVRM
FORMAT(/,7X, "MAXIMUM UNDAMPED STRESS
7X, ‘MODAL STRESS

*,1PE1S.5,/,
‘L,1PE1S5.5,/)

AND MODE
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GDRM = PSTRESS/SVRM

GF(I) = 2.0%DAM(I)*WMODAL(I)**2*EMASS(1)*GDRM
50 CONTINUE

RETURN

END

SUBROUTINE FREQRP(WMIN,WMAX,DW,FN)

FIND STRESS VERSUS FREQUENCY OF EXCITATION FOR A GIVEN
INPUT.

WMIN - SMALLEST FREQUENCY

WMAX - LARGEST FREQUENCY

DW - REFERENCE FREQUENCY INCREMENT
FN - NORMAL LOAD

IMPLICIT DOUBLE PRECISION (A-H,0-2Z)
COMMON/BLADE/U(8,10),SR(15,10),EMASS(10),wM0ODAL(10),

1 DAM(10)

COMMON/NUMB/NBLADE ,NEODER ,NMODES ,NRS,NCO
COMMON/MAIN/PHASE
COMMON/RECEPE/RE1(2,2),RE2(2,2),RE3(2,2),RE4(2,2)
COMMON/RECEPF/RF(8,8,2),CF(8,2)
COMMON/DAMPER/SMTX11(2,2),SMTX12(2,2),SMTX21(2,2),SMTX22(2,2),
1 s1(2,2),52(2,2),FCOE1},FCOE12,FCOE21,FCOE22,FNM11 ,FNMI2,
1 FNM21,FNM22,FNMC11,FNMC12,FNMC21 ,FNMC22,C0OE,COEZ
COMMON/NLOAD/FN1,FN2,ALPHA

COMMON/EXCIT/GF(10) ,MODE
COMMON/GSOLV/X(B),DX(8),XMAX(8),XMIN(8) ,DELMX(8) ,EPSI(8),
t A(8,8),8(8,1)

COMMON/STICK/IS,SFN,SW

COMMON/NITER/ITER

DIMENSION PS(3),SM(3,2)

DIMENSION PSS(500,5,3),wWw(500),5MM(500,5,3,2)

DIMENSION XI(8)

WRITE(6,10)
10 FORMAT(///,3X, *%*%%¥ CALCULATE FREQUENCY RESPONSE **#*%*')

CALL GETRE(WMIN)

MODE=1
CALL DVALUE
XI(1)=RE1(1,1)+RE4(1,1)
XI(2)=RE1(1,2)+RE4(1,2)
XI(3)=RE1(2,1)+RE4(2,1)
XI(A4)=RE1(2,2)+RE4(2,2)
XI(5)=RE2(1,1)+RE3(1,1)
XI(6)=RE2(1,2)+RE3(1,2)
XI(7)=RE2(2,1)+RE3(2,1)
XI(B8)=RE2(2,2)+RE3(2,2)
CALL DAMPR(FN)
NOEQN=8
MITER=20
IC =0
NUMO = O
DW1=DW
DW3=DW*3
Iw=2

20 W = WMIN
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120
130
140
500
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IC = 1IC +
CALL GETRE(W)

CALL GETRF(w)

DO 50 I=1,8

X(1) = XI(I)

CALL GSLV(NOEQN,X,DX,XMAX, K XMIN,KDELMX,EPSI,20,0,IERR,A,B)
IF(1ERR.EQ. 1) THEN

IF(NUMO .EQ. 0) THEN
WMIN=0.9*%WMIN

GO TO 20

ENDIF

OWi=DwW1/1IWw

W=W~DW1

GO TO 40

ENDIF

DO 60 I1=1,8

X1(I) = xX(1)

NUMO = NUMO+1

WW (NUMO ) =W

DO 80 J=1,NRS

CALL OSTRESS(W,J,PS,5M)

DO 70 JJ=1,NCO
PSS(NUMO,J,JJ) = PS{JJ)
SMM{NUMO,J,JJ,1)= SM(JJ,1)

SMM(NUMO,J,JJ,2)= SM(JJ,2)
CONTINUE

IF(IC .GE. 10) THEN

IC = IC-10

ENDIF

DWIi=DW1*(3.0-8.0/3.0*%ITER/MITER)
IF(DW1 .GE. DW3) THEN

DW1=DW3

ENDIF

W =W+ DWI

IF(W .LE. WMAX) THEN

GO TO 30

ENDIF

PRINT STRESS VS FREQUENCY

DO 140 J=1,NRS
DO 140 K=1,NCO
WRITE(6,110) J,K

FORMAT(1H1,1X, ‘FREQUENCY RESPONSE CURVE FOR STRESS NUMBER-',
13,° COMPONENT NUMBER‘,I3,//,6X, FREQUENCY' ', 10X, STRESS',/)

DO 120 I=1,NUMO
WRITE(6,130) ww(I),PSS(I,J,K)
FORMAT(1X,1PE15.5,3X,1PE15.5)
CONTINUE

WRITE(6,510)
FORMAT(/,3X, ' #%%%% END OF OUTPUT DATA #**%%%')

RETURN
END

SUBROUTINE OPTIM{NONMOD)

CALCULATES OPTIMUM NORMAL FORCE CURVE
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40

FN = NORMAL LOAD

IMPLICIT DOUBLE PRECISION (A-H,0-2)
COMMON/BLADE/U(8,10),SR(15,10) ,EMASS(10) ,WMODAL (10),

1 DAM(10)

COMMON/NUMB/NBLADE ,NEODER ,NMODES ,NRS ,NCO

COMMON/MAIN/PHASE
COMMON/DAMPER/SMTX11(2,2),5MTX12(2,2),SMTX21(2,2),5MTx22(2,2),
1 S1(2,2),52(2,2),FCOE11,FCOE12,FCOE21,FCOE22,FNM11,FNM12,
2 FNM21,FNM22 ,FNMC11,FNMC12,FNMC21,FNMC22,C0E,COE2
COMMON/NLOAD/FN1,FN2,ALPHA

COMMON/RECEPE/RE1(2,2) ,RE2(2,2),RE3(2,2),RE4(2,2)
COMMON/RECEPF/RF(8,8,2),CF(8,2)
COMMON/FFORCE/F1(2,2),F2(2,2),F3(2,2),F4(2,2)
COMMON/EXCIT/GF(10),MODE
COMMON/GSOLV1/X1(1),DX1(1),XMAX1(1) ,XMIN1(1) ,DELMX1(1),EPSI1(1),
T A1(1,1),B1(1,1)
COMMON/GSOLV/X(B) ,DX(B),XMAX(8) ,XMIN(8) ,DELMX(8) ,EPSI(8),

1 A(8,8),B(8,1)

COMMON/ERROR/IR,XI(8) ,
COMMON/STICK/1S,SFN, SW

COMMON/SWITCH/IM

DIMENSION PS(3),5M(3,2)

DIMENSION PSS(100,5,3),ww(100),SMM(100,5,3,2),FNO(100)
DIMENSION SVALUE(2),RANGLE(2),PANGLE(2)

WRITE(6,10)

FORMAT(///,3X, *%%%% CALCULATE PEAK RESPONSE *#*¢+%')
MODE=NQONMOD
XII=WMODAL(MODE)*(1.0-2.0*DAM(MODE)*#2)**0.5
XIII=0.9%XI1I

CALL GETRE1(XII)
X(1)=RE1(1,1)+RE4(1,1
X(2)=RE1(1,2)+RE4(1,2
X(3)=RE1(2,1)+REA(2,1
X{4)=RE1(2,2)+REA4(2,2
X(5)=RE2(1,1)+RE3(1,1
X{(6)=RE2(1,2)+RE3(1,2
X(7)=RE2(2,1)+RE3(2,1
X(B)=RE2(2,2)+RE3(2,2
CALL DVALUE

CALL DVALUE1
DFNN=ABS (GF (MODE))

MITER=20
NF=0

IC=0

NUMO=0
FN=0.0
DFN=DFNN
IC=IC+}
NUMO=NUMO+ 1
IT=0

IN=3

CALL DAMPR(FN)
X1(1)=XI1
DO 40 1=1.,8
XI(I)=X(I)
IM=1

CALL GSLVI(1,X1,DX1,XMAX1 XMIN1 DELMX1, EPSIV MITER,ITER,O,IERR,
1 A1,B1)
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IF(IERR.EQ.1.0R.IR.EQ.1.0R. X1(1).LE.XII*0.99.0R.
1 Xi1(1) .GT. XII#*1.,1) THEN
IT=IT+1
IF(IT .GE. 10) GO TO 100
FN=FN~DFN*(IN-1)/IN
DFN=DFN/IN
GO TO 30
ENDIF
XII=X1(1)
DO 50 1=1,8

50 X(I)=XI(1)
IM=2
CALL G?LVl(l,XI,DXI.XMAXI,XMINI,DELMXI,EPSI\,MITER.ITER,O.IERR.
1 Al1,B1
w = X1(1)
FNO (NUMO)=FN
ww (NUMO ) =w
DO 70 J=1,NRS
CALL OSTRESS(W,J,PS,SM)
DO 60 JJ=1,NCO
PSS(NUMO,J,Jd)=PS(JJ)
SMM({NUMO,J,JJ, 1)=SM(JJ,1)

60 SMM(NUMO,J,Jd,2)=SM(JJ,2)

70 CONTINUE
IF(IC.GE. 5) THEN
IC = IC-5
ENDIF
DFN=DFN*(3.0-8.0/3.0*ITER/MITER)
FN = FN +DFN
CRIT=W/XITI-1.0
IF(ABS(CRIT) .GE. 1.0D-07) THEN
XITI=X1(1)

) CF(I,J)

80 F2(I,J) = CF(1+2,J)

CALL ROTATE(F1,SVALUE,RANGLE, PANGLE)
FN1 = SVALUE(1)/COE1

CALL ROTATE(F2,SVALUE,RANGLE,PANGLE)
FN2 = SVALUE(1)/COE2

IF(ALPHA.EQ.0.0) THEN
SFN = FN2

GO TO 90
ELSEIF(ALPHA.EQ.1.0)THEN
SFN = FN1

GO TO 90

ENDIF

FN1 = FN1/ALPHA

FN2 = FN2/(1.0-ALPHA)
IF(FN1.GT.FN2)THEN
SFN = FN1

GO TO 90

ENDIF

SFN = FN2 :
90 FNO(NUMO-1)=SFN
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FNO(NUMO)=1.1%SFN

GO TO 120
100 WRITE(6,110)
110 FORMAT(/,1X, ' CONVERGEMENT FAILS; STOP COMPUTING| ')
120 CONTINUE

PRINT PEAK FREQUENCY

WRITE(6, 140)
140 FORMAT(1H1,2X, 'FREQUENCY OF PEAK RESPONSE AS A FUNCTION OF °,
1 ‘NORMAL FORCE’,//,4X, 'NORMAL FORCE’,5X,'FREQUENCY’,/)
DO 150 I=1,NUMO
150 WRITE(6,160) FNO(I),ww(I)
160 FORMAT(1X,1P2E15.5)

PRINT OPTIMUM CURVE

DO 240 J=1,NRS
DO 240 K=1,NCO
WRITE(6,210) J,K

210 FORMAT(1H1,1X, 'OPTIMUM CURVE FOR STRESS NUMBER',I13,
1 © COMPONENT NUMBER',13,//,4X, 'NORMAL FORCE’ ,9X, STRESS’,/)
DO 220 I=1,NUMO

220 WRITE(6,230) FNO(I),PSS(I,J,K)

230 FORMAT(1X,1PE15.5,3X,1PE15.5)

240 CONTINUE

500 WRITE(6,510) .

510 FORMAT(/,3X, **%+%* END OF OUTPUT DATA ***%%’)
RETURN
END

SUBROUTINE PERFOR(NONMOD,FNN)

SUBROUTINE FINDS THE PEAK STRESS WITH THE DAMPER IN PLACE AS
A FUNCTION OF WHAT THE STRESS wOULD BE WITHOUT THE DAMPER.

FNN - GIVEN DAMPER NORMAL LOAD

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
COMMON/BLADE/U(B,10) ,SR(15,10) ,EMASS(10) ,WMODAL (10},

1 DAM(10)

COMMON/NUMB /NBLADE ,NEODER , NMODES ,NRS,NCO

COMMON/MAIN/PHASE
COMMON/DAMPER/SMTX11(2,2),SMTX12(2,2),SMTX21(2,2),5MTX22(2,2),

1 S$1(2,2),52(2,2),FCOEV1,FCOE12,FCOE21 ,FCOE22 ,FNMT1 FNM12,

2 FNM21,FNM22,FNMC1t1,FNMC12,FNMC21,FNMC22,COET,COE2
COMMON/NLOAD/FN1,FN2,ALPHA
COMMON/RECEPE/RE1(2,2),RE2(2,2) ,RE3(2,2) ,RE4A(2,2)
COMMON/RECEPF/RF(8,8,2),CF(8,2)
COMMON/FFORCE/F1(2,2),F2(2,2),F3(2,2),F4(2,2)
COMMON/EXCIT/GF(10) ,MODE
COMMON/GSOLV\/XI(I),DXI(1),XMAXI(\),XMINI(I).DhIMXI(l),EPSl\(I)_

1 AL(1,1),B1(1,1)

COMMON/GSOLV/X(B8),DX(8),XMAX(8),XMIN(8) ,DELMX(8),EPSI(8),

1 A(8,8),8(8,1)

COMMON/ERROR/ IR, X1(8)

COMMON/STICK/IS,SFN, SW
COMMON/SWITCH/IM
DIMENSION PDN(100,5,3),FNO(100),SMN(100,5,3,2),ww(100),www(100)
DIMENSION PDD(100,5,3),PUD(100,5,3) ,GFF(100),SMM(100,5,3,2)
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DIMENSION PS(3),SM(3,2)
DIMENSION SVALUE(2),RANGLE(2),PANGLE(2)

WRITE(6,10)
FORMAT(/,3X, ' #*%%* CALCULATE PERFORMANCE CURVE *#*#¥%')

MODE = NONMOD
XII=WMODAL(MODE)*(1.0~-2.0%DAM(MODE)**2)*%0.5
XIII=XII*0.9

CALL GETRE1(XII)

X(1)=RE1(1,1)+RE4(1,1)
X(2)=RE1(1,2)+RE4(1,2)
X(3)=RE1(2,1)+RE4(2,1)
X(4)=RE1(2,2)+RE4(2,2)
X(5)=RE2(1,1)+RE3(1,1)
X(6)=RE2(1,2)+RE3(1,2)
X(7)=RE2(2,1)+RE3(2,1)
X(B)=RE2(2,2)+RE3(2,2)

CALL DVALUE

CALL DVALUE1

CALL DAMPR(FNN)

MITER=20

NF=0

IC=0

NUMO=0

FN=0.0

FN1 = ALPHA*FN

FN2 = (1.0 - ALPHA)*FN

DFN=ABS (GF (MODE) )

1C=IC+)

NUMO=NUMO+1

1T=0

IN=3

CONTINUE

X1(1)=XI1

DO 40 1=1,8

XI(1)=X(I)

IM=1

CALL GSLV1(1,Xt,DX1,XMAX! ,XMIN? ,DELMX1,EPSI1,MITER,ITER,O,IERR,
A1,B1)

IF(IERR.EQ.1.0R.IR.EQ.1.0R.X1(1).LE.XII*0.99.0R.
X1(1) .GT. XII*1.1) THEN

IT=1T+1

IF(IT .GE. 10) GO TO 100

FN=FN-DFN*(IN-1)/IN

DFN=DFN/IN

FN1=ALPHA*FN

FN2=(1.0-ALPHA)*FN

GO TO 30

ENDIF

XII=X1(1)

DO 50 1=1,8

X(I)=XI(1)

IM=2

CALL GSLVI1(1,X1,DX1,XMAX1,XMIN1,DELMX1 ,EPSI1 ,MITER,ITER,O,1ERR,
A1,B1)

w = X1(1)
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FNO(NUMO)=FN
ww (NUMO) =W
DO 60 J=1,NRS
CALL OSTRESS(W,J,PS,SM)
DO 60 JJ=1,NCO
SMN(NUMO,J,JdJ,1)=SM(JJ, )
SMN(NUMO,J,dJ,2)=SM(JJ,2)
PDN (NUMO, J,JJ)=PS(JJ)

60 CONTINUE
IF(IC .GE. 5) THEN
IC = IC-5
ENDIF
DFN=DFN*(3.0-8.0/3.0%*ITER/MITER)
FN=FN+DFN
FNI1=ALPHA*FN
FN2=(1.0-ALPHA)*FN
CRIT=W/XIII-1.0
IF(ABS(CRIT) .GE. 1.0D-7) THEN
XIII=X1(1)
GO 70 20
ENDIF

PRINT FREQUENCY OF PEAK RESPONSE VS NORMAL FORCE

WRITE(6,70)

70 FORMAT(1H1,1X, ‘FREQUENCY OF PEAK RESPONSE AS A FUNCTION OoF *,
1 * NORMAL FORCE‘,//,3X, NORMAL FORCE‘,5X, 'FREQUENCY',/)
WRITE(6,75) (FNO(I),ww(I),I=1,NUMO)

75 FORMAT(1X,1P2E15.7)

DO 80 1=1,2
DO 80 J=1,2
F1(I,J) = CF(1,J)
80 F2(1,4) = CF(1+2,J)
CALL ROTATE(F1,SVALUE,RANGLE,PANGLE)
FN1 = SVALUE(1)/COE1
CALL ROTATE(F2,SVALUE,RANGLE,PANGLE)
FN2 = SVALUE(1)/COE2

IF(ALPHA .EQ. 0.0) THEN
SFN = FN2

GO TO 90

ELSE IF(ALPHA .EQ. 1.0) THEN
SFN = FN1

GO TO 90

ENDIF

FN1 = FN1/ALPHA

FN2 = FN2/(1.0-ALPHA)
IF(FN1 .GT. FN2) THEN
SFN = FNI

GO 70 90

ENDIF

SFN = FN2
90 FNO(NUMO-1)=SFN
FNO{NUMO)=1.1*SFN

GO TO 120
100 WRITE(6,110)
110 FORMAT(/,1X, CONVERGEMENT FAILS; STOP COMPUTING] ")
120 CONTINUE
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GFF(1)=0.0

wWWW (1) =ww(NUMO)
DO 130 I=1,NRS
DO 130 J=1,NCO

SMM(1,1,J,1)=0.0

SMM(1,1,J,2)=0.0

PUD(1,1,J)=0.0
130 PDD(1,1,J)=0.0

DO 150 II=2,NUMO
I1=NUMO-T1+2
GFF(IT)=FNN/FNO(I1)
WWW(II)=ww(I1)
DO 150 I=1,NRS
DO 140 J=1,NCO
SMM(II,I,J,1) =SMN(II,I,J,1)*GFF(II)
SMM(II,I,J,2) =SMN(II,I,J,2)%GFF(II)
PUD(II,I,J)=PDN(1,1,J)*GFF(II)

140 PDD(II,I,J)=PDN(I1,I,J)*GFF(II)

150 CONTINUE

PRINT PEAK FREQUENCY AS A FUNCTION OF GENERALIZED FORCE

WRITE(6,160)
160 FORMAT(IH1, 1X, 'FREQUENCY OF PEAK RESPONSE AS A FUNCTION OF °,
1 ‘GENERALIZED FORCE',//,3X, GENERALIZED FORCE’,b5X,
2 *FREQUENCY’,/)
DO 170 I=1,NUMO
170 WRITE(6,180) FNO(I),www(T)
180 FORMAT(3X,1PE15.7,4X,1PE15.7)

PRINT PERFORMANCE CURVE

DO 250,J=1,NRS
DO 250 K=1,NCO
WRITE(6,220) J,K
220 FORMAT(1H1,1X, ‘DAMPER PERFORMANCE CURVE FOR STRESS NUMBER',I13,
1 * COMPONENT NUMBER',I13,//,4X, 'GEN. FORCE/NORMAL FORCE’, 10X,
2 ‘STRESS',/)
DO 230 I=1,NUMO
230 WRITE(6,240) PUD(I,J.K),PDD(I,J,K)
240 FORMAT(6X,1PE15.5,5X,1PE15.5)
250 CONTINUE
500 WRITE(6,510)
510 FORMAT(/,3X, *#*%*%x END OF OUTPUT DATA #3%s+°)
RETURN
END

SUBROUTINE OSTRESS(W,NREFER,PS,5SM)

CALCULATE STRESS INFORMATION FOR A REFERENCE POINT

IMPLICIT DOUBLE PRECISION (A-H,0-2)
COMMON/BLADE/U(8,10),SR(15,10) ,EMASS{10),wWwMODAL( 10},
1 DAM(10)

COMMON/NUMB /NBLADE ,NEODER,NMODES ,NRS,NCO
COMMON/MAIN/PHASE

COMMON/RECEPF/RF(8,8,2),CF(8,2)
COMMON/EXCIT/GF(10) ,MODE

DIMENSION SS(10),FS(10)
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DIMENSION SM(3,2),PS(3)

DO 100 T =1,NCO

DO 10 J1=1,NMODES

N1= NREFER-1
SS(J1)=SR(NCO*NI1+I,J1)

CALL RESPNSE(SS.W,SM({T1,1),5M(1,2))

DO 30 K=1,8
DO 20 J2=1,NMODES
FS(J2)= U(K,J2)

CALL STRESS(SS,FS,1.0D+0,W,SCA,SSA)

SM(I,1) = SM(I,1) - CF(K,1)*SCA + CF(K,2)*5SA
SM(I,2) = SM(I,2) - CF(K,2)*SCA - CF(K,1)#*SSA
CONTINUE

PS(I)= (SM(I,1)**2+SM(1,2)**2)*+0.5

CONTINUE

RETURN

END

SUBROUTINE DVALUE

SPECIFY NUMERICAL VALUES FOR THE PARAMETERS USED
IN GSOLV

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

COMMON/BLADE/U(8,10) ,SR(15,10) ,EMASS(10) ,WMODAL (10},
DAM(10)

COMMON/GSOLV/X(8) ,DX(8),XMAX(8),XMIN(8) ,DELMX(8) ,EPSI(8),
A(8.8),B(8,1)

COMMON/EXCIT/GF(10),MODE

COMMON/MAIN/PHASE

COMMON/RECEPE/RE1(2,2).RE2(2,2),RE3(2,2),RE4(2,2)

COMMON/CONVE/CEPSI

DIMENSION XX(8)

CALL GETRE{WMODAL (MODE))

XX(1)=RE1(1,1)+RE4(1,1)

XX(2)=RE1(1},2)+RE4(1,2)

XX(3)=RE1(2,1)+RE4(2,1)

XX(4)=RE1(2,2)+REA4(2,2)

XX(5)=RE2(1,1)+RE3(1,1)

XX(6)=RE2(1,2)+RE3(1,2)

XX(7)=RE2(2,1)+RE3(2,1)

XX(B8)=RE2(2,2)+RE3(2,2)

Do 10 1=1,2

J1=4%1-3

J2=4%1-2

J3=4%1-1

J4=4%1

XX2=(XX(J1)*#2+ XX (J2) ¥ ¥ 2+ XX (J3) *¥*2+XX(J4)*¥*2)*%0.5

EPSI(J1)=CEPSI*XX2

EPSI(J2)=EPSI(J1)

EPSI(J3)=EPSI(J1)

EPSI(J4)=EPSI(J1)

DX(J1)=0.000001*XX2

DX(J2)=DX(J1) -

DX(J43)=DX(J1)

DX(J4)=DX(J1)
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XMAX(J1)=1.0D15
XMAX(J2)=XMAX(J1)
XMAX(J3)=XMAX(J1)
XMAX(JA)=XMAX(J1)
XMIN(J1)=-10000. *XX2
XMIN(J2)=XMIN(J1)
XMIN(J3)=xXMIN(J1)
XMIN(J4)=XMIN(J1)
DELMX(J1)=0.1%XX2
DELMX(J2)=DELMX(J1)
DELMX (J3)=DELMX(J1)
DELMX(J4)=DELMX(J1)
RETURN

END

SUBROUTINE DVALUE)

SPECIFY NUMERICAL VALUES FOR THE PARAMETERS USED
IN GSOLV1

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
COMMON/BLADE/U(8,10),SR(15,10),EMASS(10),WwMODAL(10),
DAM(10)
COMMON/GSOLVI/X1(1),DX1(1),XMAXT1( 1), XMINI{1) DELMX1(1),EPSLI1(1),
A1(1,1),B1(1,1)
COMMON/EXCIT/GF(10) ,MODE
EPSIT1(1)=0.01/WMODAL (MODE)
DX1(1)=0.01*DAM(MODE ) *WMODAL (MODE)
XMAX1(1)=1.0D15
XMIN1(1)=-10000.0
DELMX1(1)=0.1*WMODAL (MODE)
RETURN
END

SUBROUTINE DAMPR(FN)

CALCULATE DAMPER STIFFNESS AND FRICTION COEFF .
AT A GIVEN NORMAL LOAD

IMPLICIT DOUBLE PRECISION (A-H,0-2)

COMMON/DAMPER/SMTX11(2,2) ,SMTX12(2,2),SMTX21(2,2),5MTXx22(2,2),
s$1(2,2),82(2,2) ,FCOE1Y ,FCOE12,FCOER1,FCOE22,FNMI1 ,FNMI12,
FNM21,FNM22,FNMC11 ,FNMC12,FNMC21 ,FNMC22,COE1,COE2

COMMON/NLOAD/FN1 ,FN2, ALPHA

FN1 = ALPHA*FN
FN2 = (1.0-ALPHA)*FN
BATA1 = (FNY-FNMC11)/(FNMC12-FNMC11)

IF(BATA1.GT.1.0)THEN
BATA1 = 1.0
ELSEIF(BATA1.LT.0.0)THEN
BATA1 = 0.0

BATA2 = (FN2-FNMC21)/(FNMC22-FNMC21)
IF(BATA2.GT.1.0)THEN

BATA2 = 1.0

ELSEIF(BATA2.LT.0.0)THEN

BATAZ2 = 0.0
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ENDIF

COEl = (1.0-BATA1)*FCOE11 + BATA1¥FCOE12
COE2 = (1.0-BATA2)*FCOE21 + BATA2%FCOE22

BATA1 = (FN1-FNM11)/(FNM12-FNM11)
IF(BATA1.GT.1.0)THEN

BATA1 = 1.0

ELSEIF(BATA1.LT.0.0)THEN

BATAY = 0.0

ENDIF

BATA2 = (FN2-FNM21)/(FNM22-FNM21)
IF(BATA2.GT.1.0)THEN

BATA2 = 1.0

ELSEIF(BATA2.LT.0.0)THEN

BATA2 = 0.0

ENDIF

S1(1,1) = (1.0-BATAT1)*SMTX11(1,1)+BATAI*SMTX12(1,1)
S1(1,2) = (1.0-BATA1)*SMTX11(1,2)+BATA1*¥SMTX12(1,2)
S1(2,1) = (1.0-BATA1)*SMTX11(2,1)+BATA1*SMTX12(2,1)
S1(2,2) = (1.0-BATA1)*SMTX11(2,2)+BATA1*SMTX12(2,2)
$2(1,1) = (1.0-BATA2)*SMTX21(1,1)+BATA2¥SMTX22(1,1)
$2(1,2) = (1.0-BATA2)*SMTX21(1,2)+BATA2¥SMTX22(1,2)
$2(2,1) = (1.0-BATA2)*SMTX21(2,1)+BATA2*¥SMTX22(2,1)
$2(2,2) = (1.0-BATA2)*SMTX21(2,2)+BATA2*SMTX22(2,2)
RETURN

END

FUNCTION F(IEQ,NOEQN,X)

A SET OF NONLINEAR EQUATIONS WHICH DESCRIBE THE MOTION

AT THE CONTACTING POINT

IMPLICIT DOUBLE PRECISION (A-H,0-2)

COMMON/DAMPER/SMTX11(2,2) ,SMTX12(2,2),SMTX21(2,2),5MTXx22(2,2},
1 §1(2,2),52(2,2),FCOE11,FCOE12,FCOE21,FCOE22 ,FNM11,FNM12,
1 FNM21,FNM22,FNMC11,FNMC12,FNMC21,FNMC22,C0E1,COE2
COMMON/NLOAD/FNI1,FN2,ALPHA

COMMON/EXCIT/GF(10) ,MODE
COMMON/RECEPE/REY(2,2),RE2(2,2),RE3(2,2),RE4(2,2)
COMMON/RECEPF/RF(8,8,2) ,CF(8,2)
COMMON/FFORCE/F1(2,2),F2(2,2),F3(2,2),F4(2,2)
COMMON/MAIN/PHASE

COMMON/STICK/1S,SFN,SW

DIMENSION X(B),wW1(2,2),w2(2,2)

DIMENSION CFF(8B,2),FF2(2,2),FF1(2,2)

wi(1,1) = X(1)
wi(1,2) = X(2)
wi(2,1) = X(3)
wi1(2,2) = x(4)
w2(1,1) = X(5)
w2(1,2) = X(6)
w2(2,1) = X(7)
w2(2,2) = X(8)

IF(IS.EQ.1)THEN
CALL AB(S1,W1,2,F1)
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CALL AB(S2,w2,2,F2)

GO TO 10

ENDIF

CALL FRIFORC(W1,S1,COE1,FN1,F1)
CALL FRIFORC(wW2,52,COE2,FN2,F2)
CALL PHASLAG(F1,PHASE,F4)

CALL PHASLAG(F2,PHASE,F3)

DO 20 I=1,2
DO 20 J=1t,2

CF(I,4)= F1(1,J)

CF(I+2,J) = F2(1,J)
CF(I+4,J) = F3(1,J)
CF(I+6,J) = F4(I,J)

CALL PHASLAG(F1,-PHASE,FF1)
CALL PHASLAG(F2,-PHASE,FF2)

DO 30 I=1,2

DO 30 J=1,2
CFF(I,J)= ~FF1(I1,J)
CFE(I+2,0) = -FF2(1,4)
CFF(I+4,J) = -F2(1,4)
CFF(I+6,J) = -F1(1,J)

00 50 I1=1,2
WI(I,1)=RE1(I,1)+REA(I, 1)

W1(1,2)=RE1(1,2)+RE4A(I,2)

DO 40 K=1,8

WI(I,1)= WI(I,1)-RF(I,K,1)*CF(K,1)+RF(I ,K,2)*CF(K,2)
WI(I,1)= WI(I,1)+RF(I+6,K,1)*CFF(K,1)~RF(I+6,K,2)*CFF(K,2)
W1(I,2)= W1(I,2)~-RF(I,K,2)*CF(K,1)-RF(I,K,1)*CF(K,2)
WI(I.2)= Wi(I,2)+RF(I+6,K,2)*CFF(K,1)+RF(1+6,K, 1)*¥CFF(K,2)
CONTINUE

DO 70 I=1,2
w2(I,1)= RE2(I,1)+RE3(I,1)

w2(1,2)= RE2(1,2)+RE3(I,2)

DO 60 K=1,8

W2(I,1)= W2(I,1)-RF(I+2,K,1)*CF(K,1)+RF(1+2,K,2)*CF{K,?2)
W2(I,1)= W2(I,1)+RF(I+4,K,1)*CFF(K,1)~RF{1+4,K,2)*CFF(K,2)
W2(I,2)= W2(I,2)-RF(I+2,K,2)%CF(K,1)-RE(I+2,K,1)*CF(K,2)
W2(I,2)= W2(I,2)+RF(I1+4,K,2)*CFF(K,1)+RF(I+4 K, 1)*%CFF(K,2)
CONTINUE

IF(IEQ.EQ.1) THEN 4
F=X{1)-wi1(1,1) )
ELSEIF(IEQ.EQ.2) THEN
F=X(2)-w1(1,2)

ELSEIF(IEQ.EQ.3) THEN
F=X(3)-w1(2,1)

ELSEIF(IEQ.EQ.4) THEN
F=X(4)-W1(2,2)

ELSEIF(IEQ.EQ.5) THEN
F=X(5)-Ww2(1,1)

ELSEIF(IEQ.EQ-.6) THEN
F=X(6)-w2(1,2)

ELSEIF(IEQ.EQ.7) THEN
F=X(7)-W2(2,1)

ELSEIF(IEQ.EQ.8) THEN
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F=Xx(8)-w2(2,2)
ENDIF

RETURN

END

FUNCTION F1(IEQ,NOEQN,X1)

A NONLINEAR EQUATION WHICH DEFINES THE PEAK RESPONSE
OF AN OPTIMAL CURVE

IMPLICIT DOUBLE PRECISION (A-H,0-2)

COMMON/EXCIT/GF(10) ,MODE

COMMON/BLADE/U(8,10),SR(15,10) ,EMASS(10) ,WMODAL(10),
DAM(10)

COMMON/RECEPE/RE1(2,2),RE2(2,2),RE3(2,2),RE4(2,2)

COMMON/RECEPF/RF(8,8,2),CF(8,2)

COMMON/GSOLV/X(8),DX(8),XMAX(8) ,XMIN(B) ,DELMX(8) ,EPSI(8),
A(8,8),B(8,1)

COMMON/ERROR/IR,X1(8)

COMMON/STICK/IS,SFN, SW

COMMON/SWITCH/ IM

DIMENSION X1(1)

w o= X1(1)

IT = 30

IF(IS.EQ.1)THEN

1T = 50

ENDIF

IF(IM .EQ. 1) THEN

CALL GETRE(W)

ELSE IF(IM .EQ. 2) THEN

CALL GETRE1(W)

ENDIF

CALL GETRF (W)

CALL GSLV(8,XI,DX,XMAX,XMIN,DELMX,EPSI ,1T,0,IR,A,B)
IF(IR.EQ.1) GO TO 10

IF(IEQ.EQ.1) THEN

F1=F9(W, .001*DAM(MODE ) *WMODAL (MODE) ,XI)
ENDIF

RETURN

END

FUNCTION F9(w,DwW,XI)

CALCULATE THE SLOPE OF AN OPTIMAL CURVE AT A GIVEN FREQUENCY

IMPLICIT DOUBLE PRECISION (A-H,0-2)

COMMON/BLADE/U(B,]O).SR(IS.\0),EMASS(10),WMODA|(Iﬂ),
DAM(10)

COMMON/NUMB/NBLADE ,NEODER , NMODES ,NRS,NCO

COMMON/MAEN/PHASE

COMMON/EXCIT/GF(10) ,MODE

COMMON/RECEPF/RF(8,8,2),CF(8,2)

COMMON/GSOLV/X(B),DX(B),XMAX(B),XMIN(B)_DELMX(B),EPSI(B),
A(8,8),8(8,1)

COMMON/OPTIMUM/NP ,NC

DIMENSION XI(8),wWw(2),FF(2)

DIMENSION PS(3),SM(3,2)

WW(2)=W+0.01*DW
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WW(1)=w~-0.01%DW
DO 10 II=1,2

CALL GETRE(WW(II))
CALL GETRF(WW(II))

X(1) = XI(1)
X(2) = XI1(2)
X(3) = XI1(3)
X(4) = XI(4)
X(8) = XI(5)
X(6) = XI(6)
X(7) = XI(7)
X(8) = X1(8)

CALL GSLV(8,X,DX,XMAX,XMIN,DELMX,EPSI,50,0,IERR,A,B)
CALL OSTRESS(WW(II),NP,PS,SM)

FF(II)=PS(NC)

FO=(FF(2)-FF(1))/(0.02+%DW)

RETURN

END

SUBROUTINE GETRE(W)

CALCULATE VIBRATORY DISPLACEMENTS OF THE FOUR CONTACT
POINTS WHEN ASSUMING ZERO NORMAL LOAD (NO FRICTION FORCE)
AND MULTI-MODE EXCITATION

IMPLICIT DOUBLE PRECISION (A-H,0-2Z)
COMMON/NUMB/NBLADE , NEODER , NMODES , NRS ,NCO
COMMON/BLADE/U(8,10),SR(15,10),EMASS(10) ,WMODAL(10),
1 DAM(10)

COMMON/RECEPE/RE1(2,2) ,RE2(2,2),RE3(2,2) ,REA(2,2)
COMMON/FFORCE/F1(2,2),F2(2,2),F3(2,2),F4(2,2)
COMMON/MAIN/PHASE

COMMON/EXCIT/GF(10) ,MODE

DIMENSION RES(2,2),RE6(2,2)

DIMENSION GD(10)

DO 50 I=1,2

DO 10 J=1,NMODES

GD(J) = U(I1,J)

CALL RESPNSE(GD,W,RET(I,1),RE1(1,2))
DO 20 J=1,NMODES

GD(J) = u(I1+2,4)

CALL RESPNSE(GD,w,RE2(I,1),RE2(I,2))
DO 30 J=1,NMODES

GD(J) = U(I+4,J)

CALL RESPNSE(GD,W,RES(I,1),RES5(I,2))
DO 40 J=1,NMODES

GD(J) = u(I+6,J)

CALL RESPNSE(GD,w,RE6(I,1),RE6(I,2))
CALL PHASLAG(RES,-PHASE,RE3)

CALL PHASLAG(RE6,-PHASE,RE4)

RETURN

END

SUBROUTINE GETRE1 (W)

CALCULATE VIBRATORY DISPLACEMENTS OF THE FOUR CONTACT
POINTS WHEN ASSUMING ZERO NORMAL LOAD (NO FRICTION FORCE)
AND SINGLE-MODE EXCITATION
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IMPLICIT DOUBLE PRECISION (A-H,0-2)
COMMON/NUMB /NBLADE ,NEODER ,NMODES ,NRS ,NCO
COMMON/BLADE/U(B,10) ,SR(15,10),EMASS(10),WMODAL (10),
1 DAM(10)
COMMON/RECEPE/RE1(2,2) ,RE2(2,2) ,RE3(2,2),RE4(2,2)
COMMON/FFORCE/F1(2,2),F2(2,2),F3(2,2),F4(2,2)
COMMON/MAIN/PHASE

COMMON/EXCIT/GF(10),MODE

DIMENSION RES5(2,2),RE6(2,2)

DIMENSION GD(10)

DO 50 1I=%,2

DO 10 J=1,NMODES

GD(4) = 0.0

GD(MODE)=U(1,MODE)

CALL RESPNSE(GD,w,RE1(I,1),RE(I,2))
DO 20 J=1,NMODES

GD(J) = 0.0

GD(MODE)=U(I+2,MODE)

CALL RESPNSE(GD,w,RE2(I,1),RE2(1,2))
DO 30 J=1,NMODES

GD(J) = 0.0

GD(MODE)=U(I+4,MODE)

CALL RESPNSE(GD,w,RE5(I,1),RE5(I,2))
DO 40 J=1,NMODES

Gb(J) = 0.0

GD(MODE)}=U(I1+6,MODE)

CALL RESPNSE(GD,w,RE6(I1,1),RE6(1,2))
CALL PHASLAG(RES,-PHASE,RE3)

CALL PHASLAG(RES6,-PHASE ,RE4)

RETURN

END

SUBROUTINE GETRF (W)
CALCULATE RECEPTANCE MATRIX

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
COMMON/BLADE/U(8,10),5(15,10),EMASS(10) ,WMODAL(10),
1 DAM(10)

COMMON/NUMB/NBLADE ,NEODER , NMODES ,NRS ,NCO
COMMON/MAIN/PHASE

COMMON/RECEPF/RF(8,8,2),CF(8,2)

DIMENSION DSHAPE(10),FSHAPE(10)

DO 20 I1=1,8
DO 20 J=1,8

DO 10 K=1,NMODES
DSHAPE(K) = U(I,K)
FSHAPE(K) = U(J,K)

CALL RECEPTN(DSHAPE, FSHAPE, 1.0D+0,W,RF(1,J,1),RH(1,J,2))
CONTINUE

RETURN

END

SUBROUTINE RECEPTN(DSHAPE ,FSHAPE ,FC,W,RC,RS)

CALCULATE RECEPTANCE (DISPLACEMENT)
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IMPLICIT DOUBLE PRECISION (A-H,0-2)

COMMON/BLADE/U(8,10),S(15,10) ,EMASS(10),WMODAL(10),
DAM(10)

COMMON/NUMB/NBLADE , NEODER , NMODES ,NRS,NCO

DIMENSION DSHAPE(10),FSHAPE(10)

RC = 0.0

RS = 0.0

DO 10 J=1,NMODES

GFC = FSHAPE(J)*FC/EMASS(J)/WMODAL(J)**2

DEN1 = 1.0 - (W/WMODAL(J))*%2

DEN2 = 2.0%DAM(J)*W/WMODAL (J)

RC = RC + DSHAPE(J)*DEN1*GFC/(DEN1%#*%2+DEN2%+2)

RS = RS + DSHAPE(J)*(DEN2*GFC)/(DEN1%%2+DEN2+%2)

CONTINUE

RETURN

END

SUBROUTINE STRESS(SSHAPE,FSHAPE,FC,W,SC,SS)
CALCULATE RECEPTANCE (STRESS)

IMPLICIT DOUBLE PRECISION (A-H,0-2)

COMMON/BLADE/U(8,10),S(15,10) ,EMASS(10) ,wMODAL (10),
DAM(10)

COMMON/NUMB/NBLADE ,NEODER ,NMODES ,NRS,NCO

DIMENSION SSHAPE(10),FSHAPE(10)

sC = 0.0

SS = 0.0

DO 10 J=1,NMODES

GFC = FSHAPE(J)*FC/EMASS(J)/WMODAL(J)*%*2

DEN1 = 1.0 - (W/WMODAL(J))#**2
DEN2 = 2.0*DAM(J)*W/WMODAL (J)

SC = SC + SSHAPE(J)*DEN1*GFC/ (DEN1**2+DEN2%*2)
SS = SS + SSHAPE(J)*(DENZ2*GFC)/(DEN1**2+DEN2%%2)
CONTINUE

RETURN

END

SUBROUTINE RESPNSE(GD,W,RC,RS)

CALCULATE VIBRATORY RESPONSE OF A NODE POINT WHOSE

MODAL DISPLACEMENT/STRESS IS GIVEN

IMPLICIT DOUBLE PRECISION (A-H,0-2)

COMMON/NUMB/NBLADE ,NEODER ,NMODES ,NRS ,NCO

COMMON/BLADE/U(B8,10),S(15,10) ,EMASS(10),wMODAL(10Q),
DAM(10)

COMMON/EXCIT/GF(10),MODE

DIMENSION GD(10)

RC 0.0

RS 0.0

DO 10 J=1,NMODES

GFC = GF(J)/EMASS(J)/WMODAL(J)#**2

DENY = 1.0 - (W/WMODAL(J))**2

DENZ2 = 2.0*DAM{J)*W/WMODAL(J)

RC = RC + GD(J)*DEN1*GFC/(DEN1**2+DEN2%%2)
RS = RS + GD(J)*(DEN2+*GFC)/(DEN1*%2+DEN2*%2)
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10 CONTINUE

20

RETURN
END

SUBROUTINE PHASLAG(F1,PHASE,F2)
CALCULATE PHASE ANGLE BETWEEN ADJACENT BLADES

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSION F1(2,2),F2(2,2)

C = COS(PHASE)

S = SIN(PHASE)

F2(1,1) = =C*F1(1,1) + S*Fi(1,2)
F2(2,1) = -C*F1(2,1) + S*F1(2,2)
F2(1,2) = ~-S*F1(1,1) - C*F1(1,2)
F2(2,2) = -S*F1(2,1) - C*F1(2,2)
RETURN

END

SUBROUTINE FRIFORC(DMATRX,SMATRX,FCOE,FNORM,FFMATRX)

CALCULATE FRICTION FORCE MATRIX WHEN RELATIVE
DISPLACEMENT MATRIX OF THE CONTACT POINTS
IS GIVEN

IMPLICIT DOUBLE PRECISION (A-H,0-Z)

DIMENSION DMATRX(2,2),SMATRX(2,2),FFMATRX(2,2)
DIMENSION SVALUE(2),RANGLE(2),PANGLE(2),U(2,2),Vv(2,2)
DIMENSION FFSTIC(2,2),FFSLIP(2,2),RFFSLIP(2,2)
CALL AB(SMATRX,DMATRX,2,FFSTIC)

CALL ROTATE(FFSTIC,SVALUE,RANGLE,PANGLE)
IF(SVALUE(1).EQ.0.0) THEN

D0 10 I=1,2

DO 10 J=1,2

EFMATRX(I,J) = 0.0

GO TO 100

ENDIF

FLIMIT = FCOE*FNORM

SLIP = FLIMIT/SVALUE(1)

IF(SLIP.LT.1.0) GO TO 20

CALL EMATRX(FFSTIC,FFMATRX,2)

GO TO 100
CONTINUE

CALL ROTATE(DMATRX,SVALUE,RANGLE,PANGLE)
R = SVALUE(2)/SVALUE(1)

CALL ELLIPI(R,BSIN,BCOS)

FOURDPI = 4.0/3.1415927

RFESLIP(1,1) 0.0

RFFSLIP(1,2) ~FLIMIT*FOURDPI*BSIN
RFFSLIP(2,1) FLIMIT*FOURDPI *BCOS

RFFSLIP(2,2) 0.0

O T T /|

CALL RTMATRX{(RANGLE(1),U)
CALL RTMATRX(-PANGLE(1),V)
CALL ABC(U,RFFSLIP,V,2 FFSLIP)
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INTERPOLATION COEFFICIENTS

CSTHETA
THETA =
CSTIC =
csLIp =
CALL €O
100 CONTINU
RETURN
END
FUNCTIO
ELLIP1 - C
T - INPUT
IMPLICI
AO = 1.
Al = 0.
A2 = 0.
A3 = 0.
A4 = O.
B0 = 0.
B1 = 0.
82 = 0.
83 = 0.
B4 = 0.
T1 =
T2 = Ty
T3 = T1
T4 = T1
ELLIP}
ELLIP}Y
RETURN
END
FUNCTIO
ELLIPZ - C
T -~ INPUT
IMPLICI
AO = 1.
Al = O
A2 = O
A3 = O
A4 =0
81 =0
B2 = 0
B3 = 0
B4 = 0
T = 1.
T2 = T1
T3 = T1
T4 = T1
ELLIP2
ELLIP2

RETURN

= 1.0 - 2.0#%SLIP

ACOS(CSTHETA)

(THETA - 0.5*SIN(2.0*THETA)})/3.1415927

1.0 - SLIP
MATRX(CSTIC,FFSTIC,CSLIP,FFSLIP,2, FFMATRX)
£

N ELLIP1 (T)
OMPLETE ELLIPTIC INTEGRAL OF THE FIRST KIND.
PARAMETER; 0 < T < 1.0

T DOUBLE PRECISION (A-H,0-Z)
38629436112
09666344259
03590092383
03742563713
01451196212
5
12498593597
06880248576
03328355346
00441787012

0 -7

1Y)
%3
%4
= (AQO+AI*TI1+A2%T2+A3%T3+A4%T4)

= ELLIP1 + (BO+B1I*71+B2*7T2+B3*T3+B4*14)4+LQG(1.0/71)

N ELLIPZ (T)
OMPLETE ELLIPTIC INTEGRAL OF THE SECOND KIND.
PARAMETER; 0 < T < 1.0

T DOUBLE PRECISION (A-H,0-2)
0

.44325141463
.06260601220
.04757383546
.01736506451
.24998368310
.08200180037
.04069697526
.00526449639

0-T

%D

**%3

%4

= (AD+A1*¥T1+A2%T2+A3*T3+A4%T4)

= ELLIPZ + (B1*T1+B2*%T2+B3*T3+B4+T4)*L0OG(1.0/T1)
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SUBROUTINE ROTATE (A,SVALUE,RANGLE,PANGLE)

CALCULATE SINGULAR VALUES AND VECTORS OF A MATRIX A

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
DIMENSION A(2,2),SVALUE(2),RANGLE(2),PANGLE(2)

DS = A(1,1) + A(2,2)
DD = A(1,1) - A(2,2)
CS = A(1,2) + A(2,1)
CD = A(2,1) - A(1},2)
SDS = DS*DS
SDD = DD*DD
SCS = CS*CS
SCD = CD*CD

SVALUE(1) = 0.5%((SDS+SCD)**0.
SVALUE(2) = 0.5%((SDS+SCD)**0.
IF(SVALUE(1).EQ.SVALUE(2)) GO
SRAP = ATANZ2(CS,DD)

GO 70 20

SRAP = 0.0

IF(SVALUE(1).EQ. (-SVALUE(2)))
DRAP = ATAN2(CD,DS)

GO TO 40
DRAP = 0.0
CONTINUE
RANGLE(1)
RANGLE(2)
PANGLE(1)
PANGLE(2)
RETURN

END

0.5*%*(SRAP + DRAP)
RANGLE(1)*180.0/3.
0.5*%*(SRAP - DRAP)
PANGLE(1)*180.0/3.

unuun

SUBROUTINE RTMATRX (RANGLE,U)

GIVE TWO DIMENSIONAL ROTATI
ANGLE IS GIVEN

5 + (SDD+SCS)**0.5)
5 - (SDD+SCS)**0.5)
TO 10

GO TO 30

1415927

1415927

ON MATRIX WHEN ROTATIONAL

IMPLICIT DOUBLE PRECISION (A-H,0-2Z)

DIMENSION U(2,2)

U(1,1) = COS(RANGLE)
U(2,1) = SIN(RANGLE)
u(1,2) = =u(2,1)
u(z,2) = u(1,1)
RETURN

END

SUBROUTINE ELLIPI(R,BSIN,BCOS)

IMPLICIT DOUBLE PRECISION (A-H,0-2)

IF(ABS(R) .LE. 1.0D-04) GO TO
IF(ABS(R) .EQ. 1.0) GO TO 20
IF(ABS(R).GT.1.0) GO TO 10

T = 1.0 - R*R

El = ELLIPI(T)

E2 = ELLIP2(T)

BSIN = (E2 - (1.0-T)*E1)/T
BCOS = (E1 - E2)*R/T

25
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GO TO 30
CONTINUE

T = 1.0 - 1/(R*R)
E1 = ELLIPI(T)

E2 = ELLIP2(T)

BCOS = (E2 - (1.0-T)*E1)/T
BSIN = (E1 - E2)/R/T
GO TO 30

CONTINUE

BSIN = 3.1415927/4.0
BCOS = R#*BSIN

GO TO 30

BSIN = 1.0

BCOS = 0.0

CONTINUE

RETURN

END

SUBROUTINE AB(A,B,N,C)
C = AB (MATRIX MULTIPLICATION)

IMPLICIT DOUBLE PRECISION (A-H,0-2)
DIMENSION A(2,2),8B(2,2),C(2,2)

DO 10 I=1,N

DO 10 J=1,N

c(r,J) = 0.0

DO 20 K=1,N

C(1,J) = C(1,J) + A(I,K)*B(K,J)
CONTINUE

RETURN
END

SUBROUTINE ABC(A,B,C,N,D)
D = ABC (MATRIX MULTIPLICATION)

IMPLICIT DOUBLE PRECISION (A-H,0-2)
DIMENSION A(2,2),B(2,2),C(2,2),D(2,2),E(2,2)
CALL AB(A,B,N,E)

CALL AB(E,C.N,D)

RETURN

END

SUBROUTINE EMATRX(A,B,N)
DUPLICATES A MATRIX A =8

IMPLICIT DOUBLE PRECISION (A-H,0-2)
DIMENSION A(2,2),8(2,2)

DO 10 I=1,N

DO 10 J=1,N

B(I,J) = A(I,J)

RETURN

END

SUBROUTINE COMATRX(CA,A,CB,B,N,C)
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LINEAR COMBINATION OF TWO MATRICES C = CA*A + (CB*8B

IMPLICIT DOUBLE PRECISION (A-H,0-2)
DIMENSION A(2,2),8(2,2),C(2,2)
DO 10 I=1,N
DO 10 J=1,N
10 C(I,J) = CA*A(1,4) + CB*B(I,J)

RETURN
END
SUBROUTINE GSLV (NOEQN,X,DX,XMAX,XMIN,DELMX, EPSI MITER,
i IPARTL,IERR,A,B)
GSOLV - SOLVES A NONLINEAR EQUATIONS SET BY NEWTON-RAPHSON'S
METHOD .

PROGRAM DESCRIPTION
SOLVES A NONLINEAR EQUATION SET BY NEWION-RAPHSON'S
METHOD. (UP TO 100 X 100 EQUATIONS SET).

IMPLICIT DOUBLE PRECISION (A-H,0-Z)
COMMON/NITER/ITER

DIMENSION X(NOEQN),XMAX(NOEQN),XMIN(NOEQN),
1 DELMX (NOEQN) ,DX(NOEQN) ,EPSI (NOEQN)
DIMENSION A(NOEQN,NOEQN),B(NOEQN, 1)
DIMENSION LW(300),XN(100),FV(10)

EXTERNAL F '

INITIALIZE DATA

IERR=0
IHALT=0
ITER=0

SOLVE THE EQUATION USING THE NEWTON'S METHOD
10 CONTINUE
IF NO. OF ITERATIONS ARE GREATER THAN MITER, DIVERGES

ITER=ITER+1
IF(ITER.GT.MITER) THEN
IERR=1

GO TO 70

ENDIF

GET THE FUNCTION VALUE FOR THE CURRENT VARIABLE VALUES

DO 40 I=1,NOEQN

IENUMB= I

VALF= F{(IENUMB,NOEQN,X)
B(I,1)= -VALF
FV(1)=VALF

GET THE PARTIAL DIFFERENCE VALUE FOR THE CURRENT VARIABLE VALUES

DO 30 J=1,NOEQN
IVNUMB=J
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STOP WHEN THE VALUE OF THE VARIABLE IS LESS THAN XMIN
OR GREATER THAN XMAX.

IF(X(IVNUMB) .LT.XMIN{IVNUMB)) THEN
X(IVNUMB)=X(IVNUMB)+500.

GO TO 10
ELSEIF(X(IVNUMB).GT.XMAX{(IVNUMB)}) THEN
IERR=2

GO TO0 70

ENDIF

CALCULATE THE PARTIAL DERIVATIVES NUMERICALLY.

IF(IPARTL.EQ.D) THEN
DO 20 K=1,NOEQN
XN(K) = X(K)

20 CONTINUE
XN(IVNUMB)=X(TVNUMB)+DX(IVNUMB)
FNEW = F(IENUMB,NOEQN,XN)
A(1,J) = (FNEW-VALF)/DX(1VNUMB)

CALCULATE THE PARTIAL DERIVATIVES ANALYTICALLY.

ELSEIF(IPARTL.EQ.1) THEN
A(I,J)= PARTL(IENUMB,IVNUMB,N,X)
ENDIF

30 CONTINUE
40 CONTINUE
IHALT=1
DO 44 I=1,NOEQN
DAA=ABS(FV(I))
1F(DAA.GT.EPSI(1)) THEN
IHALT=0
ENDIF
44 CONTINUE
IF(IHALT.EQ.1) GO TO 70

SOLVE THE NOEQN BY NOEQN METRICS

CALL ULNEQ2(A,NOEQN,NOEQN.B,1,NOEQN,LW,0.,LRR)
IF(LRR.EQ.1) THEN

IERR=3

GO 70 70

ENDIF

IF THE CHANGE OF VARIABLE IS GREATER THAN THE ALLOWABLE
MAXIMUM VALUE,LIMIT THE CHANGE OF THE VARIABLES.

DO 50 I=1,NOEQN
IVNUMB=1
IF(ABS(B(I,1)).GT.DELMX(IVNUMB)) THEN
SIGN=B(I,1)/ABS(B(I,1))
B(I,1)=SIGN*DELMX(IVNUMB)
ENDIF

50 CONTINUE

GET THE NEW VALUES OF THE VARIABLES

IHALT=1



NIHL ( (BWNNAT)XVAX LD (BWNNAI)X)H13S13
oL 01 09

T00G+ (GWNNAT ) X=(BWNNAT) X

N3IHL ((BWNANAT)INIWX L7 (BWNNAT)X) 31

TXVWX NVHLI H3ILVIHO HO
NIWX NVHL SS37 SI 378VIYVA 3HL 40 3INTVA 3FHL NIHM dOLS

r=8WNNAT
NDION‘L=r 0€ 0d

S3INIVA 378VIHVA LNIYHND 3HL HO4 INTIVA IONIYIJJIQ Ivilvd IHL 139

4IWA=(1)Ad

4IVA- =(i‘1)8

0L 01 09 (L b3 "¥I1)dI

(X ‘NDION'GWNNII) I3 =d4TVA
1 =gNNN3II

NDION‘L=1 Ot 0d

SINTIVYA 37GVIYYA EINIFHYND 3HL ¥Od4 3INIVA NOILONNS 3IHL 139

4I10N3

0L OL 09

L=HY3I

N3IHL (¥31IW°19°¥311)51
L+4311=43L1

SIADUIAIQA ‘YILIWN NVHL ¥31v3I¥D 3¥VY SNOILvHILI JO "ON dI

3NNILNOD 0!
QOHLIW S.NOLM3IN IHL HNISN . NOILVNDI 3IHL IATOS

0=¥4311
0=11VHI
0=Y¥3I

vivg 3IZIVILINI

14 TvNy3LX3a
(0L)A4° (00L)NX‘ (00E)IMT NOISN3IWIQA
(1 °ND3ON)S* (NDION‘NDION)V NOISNIWIQ
(ND3ION) ISd3* (ND3ON)IXa* (NDION)XWI3Q i
“(ND3ON)INIWX* (NDION)IXVWX* (NDION)X NOISNIWIQ
(8)IX‘HI/¥0O¥YI/NOWNOD

(Z-0'H-v) NOISIJ3Y¥d 378N0G 1IDITJWI

(8°vV Yy3I‘'11YvdI t
‘UILTICYILIW  I1SAdI XWIIA ' NIWX XVIAX XA X 'NDION) LATISH INILNOHENS
an3
NYNL3Y OL
0ol 0L 09

3INNILNOD 09

M3NX =(I)X
(1'1)8+(1)X = MINX
(1'1)8 = X13a
NO3ON't=I 09 0aQ

(SRS RS RS

[GRSRS]

[SRSNS)

LDOL VOO

[SRSRS}

RI/RD 91-230

AS8



65V

0€T-16 @QI/MA

IERR=2
GO TO 70
ENDIF

CALCULATE THE PARTIAL DERIVATIVES NUMERICALLY.

OO0

IF(IPARTL.EQ.0) THEN
DO 20 K=1,NOEQN
XN(K) = X(K)

20 CONTINUE
XN(IVNUMB)=X(IVNUMB)+DX ( 1VNUMB)
FNEW = F1(IENUMB,NOEQN,XN)
A(I,J) = (FNEW-VALF)/DX(IVNUMB)

CALCULATE THE PARTIAL DERIVATIVES ANALYTICALLY.
ELSEIF(IPARTL.EQ.1) THEN

A(I,J)= PARTL(IENUMB,IVNUMB,N,X)
ENDIF

o O oo0on

30 CONTINUE

40 CONTINUE
IHALT=1
DO 44 I=1,NOEQN
DAA=ABS(FV(I))
IF(DAA.GT.EPSI(I)) THEN
THALT=0
ENDIF

44 CONTINUE
IF(IHALT.EQ.1) GO TO 70

SOLVE THE NOEQN BY NOEQN METRICS

oo0n

CALL ULNEQ2(A,NOEQN,NOEQN,B, 1 ,NOEQN,LW,0.,LRR)
IF(LRR.EQ.1) THEN

IERR=3

GO 70 70

ENDIF

IF THE CHANGE OF VARIABLE IS GREATER THAN THE ALLOWABLE
MAXIMUM VALUE,LIMIT THE CHANGE OF THE VARIABLES.

ooon

DO 50 I=1,NOEQN
IVNUMB=1
IF(ABS(B(I,1)).GT.DELMX{IVNUMB)) THEN
SIGN=B(I,1)/ABS(B(I,1))
B(I,1)=SIGN*DELMX{(IVNUMB)
ENDIF
50 CONTINUE
C
C GET THE NEW VALUES OF THE VARIABLES
C
IHALT=1
DO 60 I=1,NOEQN
DELX = B(I,1)
XNEW = X(I)+B(I,1)
X(I)= XNEW

60 CONTINUE
GO 70 10
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RETURN
END

SUBROUTINE ULNEQ2 (A,N,IDIMA,B,M,IDIMB,LWORK, LPS,T1ERR)

ULNEQ2 - SOLVES A SET OF DOUBLE-PRECISION LINEAR EQUATIONS.

PROGRAM DESCRIPTION
THIS SUBROUTINE SOLVES THE MATRIX EQUATION A * X = B,
OVERWRITING B WITH THE SOLUTION MATRIX X. A MUST BE SQUARE
AND NON-SINGULAR. B MUST HAVE THE SAME NUMBER OF ROWS AS A.
BOTH A AND B ARE DESTROYED. B80TH A AND B ARE DOUBLE-
PRECISION MATRICES.

ACCESS
CALL ULNEQ2 (A,N,IDIMA ,B,M,IDIMB, LWORK,EPS, IERR)
-DP ARY-U/R- D]M(IDIMA N)— COEFFICIENT MATRIX OF THE
MATRIX EQUATION A * X = B. THE N X N PORTION OF A
MUST CONTAIN THE SQUARE COEFFICIENT MATRIX. THE
CONTENTS OF THIS PORTION ARE DESTROVED BY THIS ROUTINE.
N ~-IN VBL-USD- THE ORDER OF COEFFICIENT MATRIX A . N MUST
BE LESS THAN OR EQUAL TO IDIMA,LESS THAN OR EQUAL TO
THE SECOND DIMENSION OF A IN THE CALLING ROUTINE,AND
LESS THAN OR EQUAL TO 1DIMB.
IDIMA ~IN VBL-USD- FIRST DIMENSION OF A IN THE CALLING ROUTINE.
B -DP ARY-U/R-DIM(IDIMB,M)- CONSTANT-TERM (RIGHT-HAND-SIDE)
MATRIX. THE N X M PORTION OF B MUST CONTAIN THE
RIGHT~HAND-SIDE MATRIX. UPON RETURN FROM THIS ROUTINE,
THIS PORTION OF B CONTAINS THE SOLUTION MATRIX.
M —IN VBL-USD- THE NUMBER OF COLUMNS IN B. M MUST BE LESS
THAN OR EQUAL TO THE SECOND DIMENSION OF B IN THE
CALLING ROUTINE.
IDIMB -IN VBL-USD- FIRST DIMENSION OF B IN THE CALLING ROUTINE.
LWORK —IN ARY-WRK-DIM(3*N)- WORKING ARRAY FOR SOLUTION
ALGORITHM. {WORK MAY BE ANY INTEGER ARRAY WITH AT LEAST
3N ELEMENTS. THE FIRST THIRD 1S RESERVED FOR PIVOT
COLUMN INDICES. THE FIRST NP POSITIONS OF THIS THIRD
LIST THE PIVOT COLUMN INDICES IN ORDER OF USE. THE
SECOND THIRD IS RESERVED FOR PIVOT ROwW INDICES. THE
FIRST NP POSITIONS OF THIS THIRD LIST THE PIVOT ROW
INDICES IN ORDER OF USE. THE LAST THIRD IS USED FOR
TEMPORARY STORAGE FOR INTERCHANGE OF PIVOIP RUW AND
COLUMN INDICES.
EPS -RL VBL-USD~- VALUE ALL PIVOT ELEMENTS MUST EXCEED -FOR
MATRIX A TO BE CONSIDERED NONSINGULAR. IF IN DOUBT,
USE THE VALUE 0.0 .
IERR ~IN VBL-RTD- PIVOT-SEARCH ERROR CODE (SEE BELOW).

COMMON BLOCK VARIABLES
NONE

ERROR CONDITIONS
PIVOT-SEARCH ERRORS ARE RETURNED THROUGH IERR AS FOLLOWS-
IERR=0 IF ALL COLUMNS OF X ARE FOUND,NO TROUBLE UEING DETECTED.
IERR=1 IF NO COLUMNS OF X ARE FOUND,THE ELIMINATION PROCESS
BEING HALTED BECAUSE THE CURRENT PIVOT FAILS TO EXCEED EPS IN

MAGNITUDE.

EXTERNAL REFERENCES
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NONE

COMMENTS
THE METHOD CONSISTS OF GAUSSIAN ELIMINATION FOLLOWED BY BACK
SUBSTITUTIONS. THIS IS MORE EFFICIENT THAN SOLUTION BY MATRIX
INVERSION REGARDLESS OF THE NUMBER OF COLUMNS IN B. BOTH ROWS
AND COLUMNS ARE SEARCHED FOR MAXIMAL PIVOTS. INTERCHANGING OF
ROWS OR COLUMNS OF A IS AVOIDED. CHAPTER 1 OF E.L. STIEFLE,
INTRODUCTION TO NUMERICAL MATHEMATICS,ACADEMIC PRESS,N.Y., 1963,
SHOULD BE HELPFUL IN FOLLOWING THE CODE.

LOCAL VARIABLES
ABSEPS -DP vBL- ABSOLUTE VALUE OF EPS.
ABSPIV -DP VBL- ABSOLUTE VAtLUE OF PIV.

IPIV -IN vBL- ACTUAL ROW OF CURRENT PIVOT ELEMENT.
ITEMP -IN VBL- TEMPORARY SPACE FOR INTERCHANGE OF PIVOT
INDICES.
JPIV -IN VBL- ACTUAL COLUMN OF CURRENT PIVOT ELEMENT.
KPIV —-IN VBL- LOCATION IN SECOND THIRD OF LWORK (ROwW PIVOTS)
CORRESPONDING TO CURRENT PIVOT.
LPIV ~-IN VBL- LOCATION IN FIRST THIRD OF LWORK (COLUMN PIVOTS)
CORRESPONDING TO CURRENT PIVOT. .
NP -IN VBL- NUMBER Of PIVOT ELEMENT CURRENTLY BEING
COMPUTED.
NPN -IN VBL- N PLUS N (I.E. 2N).
NPP -IN VBL- NP PLUS 1 .
PIV -DP VBL- VALUE OF THE CURRENT PIVOT.
TEMP -DP VBL- TEMPORARY SPACE FOR INTERCHANGE OF ELEMENTS OFfF

SOLUTION MATRIX.

DIMENSION A(IDIMA,N),B(IDIMB,M), LWORK(300)
DOUBLE PRECISION A,B

DOUBLE PRECISION ABSEPS,ABSPIV,PIV, TEMP

INITIALIZATIONS

IERR=1

NPN=N+N
ABSEPS=ABS(EPS)
DO 1 I=1,N
LWORK(I+N)=1
LWORK(I)=1
CONTINUE

BEGIN ELIMINATION PROCESS
DO 10 NP=1,N
SELECT PIVOT

ABSPIV=0.0

DO 3 K=NP,N

I=LWORK(K+N)

DO 2 L=NP,N

J=LWORK(L)

1F (ABS(A(I,J)).LE.ABSPIV) GOTO 2
KPIV=K

LPIV=L
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IPIV=I

JPIV=J
PIV=A(I,J)
ABSPIV=ABS(PIV)
CONTINUE
CONTINUE

EXIT IF PIVOT TOO SMALL

IF (ABSPIV.LE.ABSEPS) GOTO 19

UPDATE PIVOT ROW AND COLUMN LISTS

ITEMP=LWORK(NP+N)

LWORK (NP+N)=LWORK(KPIV+N)
LWORK (KPIV+N)=1TEMP
ITEMP=LWORK(NP)
LWORK(NP)=LWORK(LPIV)
LWORK(LPIV)=1TEMP

MODIFY PIVOT ROW OF A AND B (ELEMENTS IN PRESENT OR PREVIOUS
PIVOT COLUMNS OF A ARE SKIPPED)

IF (NP.EQ.N) GOTO 5
NPP=NP+1

DO 4 L=NPP,N

J=LWORK (L)
A(IPIV,J)=-A(IPIV,J)/P1V
CONTINUE

DO 6 J=1,M
B(IPIV,J)=-B(IPIV,J)/PLV
CONTINUE

MODIFY NON-PIVOT ROWS OF A AND B (ELEMENTS 1IN PRESENT OR
PREVIOUS PIVOT ROWS OR COLUMNS ARE SKIPPED)

IF (NP.EQ.N) GOTO 10

DO 9 K=NPP,N

I=LWORK (K+N)

TEMP=A(I,JP1IV)

IF (TEMP.EQ.0.0) GOTO 9

DO 7 L=NPP,N

J=LWORK (L)
ACL,J)=A(1,J)+A(IPIV, J)*TEMP
CONTINUE

DO 8 J=1,M
B(I,J)=B(I,J)+B(IPIV,J)*TEMP
CONTINUE

CONTINUE

CONTINUE

END ELIMINATION PROCESS
BEGIN BACK SUBSTITUTIONS
DO 13 J=1,M
DO 12 K=2,N

KK=N-K+1
I=LWORK(KK+N)
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DO 11 L=2,K
LL=N-L+2
IT=LWORK(LL+N)
JJU=LWORK(LL)

B(I,J)=B(1,0)+B(II,J)*A(T1,JJ)

CONTINUE
CONTINUE
CONTINUE

UNSCRAMBLE ROWS OF SOLUTION MATRIX

DO 14 1=1,N
L=LWORK(I+N)

LWORK (L+NPN)=LWORK(I)
CONTINUE

DO 17 I=1,N

K=LWORK (I+NPN)

IF (1.EQ.K) GOTO 17
DO 16 J=1,M
TEMP=B(I,J)
B(I.,J)=B(K,J)
B(K,J)=TEMP

CONTINUE

LWORK (I+NPN) =LWORK (K+NPN)
LWORK (K+NPN) =K

GO TO 15

CONTINUE

D0 18 J=1 .M
DO 18 I=1,N
8(1,4)=-8B(I1,J)
CONTINUE
IERR=0

RETURN

END
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